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Thanks

I am grateful to the organizers for the invitation and giving

me a chance to present my results.
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W-map

First considered by G. Keller (1994) with s1 = s4 = 4,

s2 = s3 = 2.
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Acim Stability of map τ

acim = absolutely continuous invariant measure

We consider τ0 with acim µ0 and a family of perturbations

τa with acim’s µa such that τa → τ0 as a → 0, say in

Skorokhod metric.

We say, τ0 is acim stable if µa → µ0 as a → 0, say in weak∗
topology.

Keller constructed perturbations such that his W-map was

not acim stable under these perturbations.
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Our perturbations
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Why is there a problem?

From standard Lasota-Yorke (1973) inequality it follows

that τ is acim stable if |τ ′| ≥ λ > 2. Stability of isolated

eigenvalues and corresponding eigenfunctions of

Frobenius-Perron operator was proved by Keller and

Liverani (1999).

Standard method to improve the slope is to consider an

iterate of τ . It does not work for perturbations of a map with

a turning fixed point.
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Iterates of perturbed τ0 I

Second iterates for a = 0.10 and a = 0.05:
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The results

Three cases:

1
s2

+ 1
s3

> 1: There exists a small invariant subinterval

around the turning fixed point x0 and

µa → δ{x0} ,

∗-weakly.

1
s2

+ 1
s3

= 1: for example s2 = s3 = 2.

τa are exact on [0,1] and

µa → αδ{x0} +(1−α)µ0 ,

∗-weakly. To prove this we used the general formulas for

acim of piecewise linear eventually expanding maps (Góra,

2009).



W-maps and harmonic

averages

Contents

Harmonic mean (average)

W-map

Acim Stability of map τ

The results

Stronger Lasota-Yorke

inequality

Minimax problem

Lower bound for the

densities

References

The results:

1
s2

+ 1
s3

< 1:

τ0 is acim stable, i.e.,

µa → µ0 ,

not only ∗-weakly but also in L1. The proof is based on a

slightly stronger Lasota-Yorke inequality (Eslami and Góra,

to appear).
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Stronger Lasota-Yorke inequality:

Theorem
Let τ : [0,1]→ [0,1] be piecewise expanding with q

branches, piecewise C1+1 and satisfy

η = max
1≤i<q

(

1

si

+
1

si+1

)

< 1 , (1)

where si = min |τ ′
i |, i = 1,2, . . .,q.

Then, for every f ∈ BV([0,1]),

∨

I

Pτ f ≤ η
∨

I

f + γ

∫

I
|f |dm . (2)

γ = M
s2 + 2

s min
1≤i≤q

m(Ii)
, where s = minsi , Ii is the domain of

branch τi and M is the common Lipschitz constant of τ ′
i ,

i = 1,2, . . .,q.
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Stability

Now, the whole stability theory holds under the above

slightly weaker assumption.

In particular, Ulam’s approximation method works under

the assumption (1), (Góra and Boyarsky, to appear in

Discrete and Continuous Dynamical System - A).

Ulam’s method works also for standard W-map

(s1 = s4 = 4, s2 = s3 = 2).
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A small detail

The above inequality holds if we assume additionally that

τ(0),τ(1)∈ {0,1}. This restriction can be removed

considering our system onto a slightly bigger interval and

properly extended:
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Minimax Problem

The constant

η =

(

1

s1

+
1

s2

)

shows up in the following minimax problem:

Let s1, s2 > 1 and α +β = c, where α ,β > 0. Then,

min
α ,β

max{s1α , s2β} =
1

1
s1

+ 1
s2

c .
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Proof:

Proof: We have

min
α ,β

max{s1α , s2β}= min
α

max{s1α , s2(c−α)} .

The line f (α) = s1α is increasing while the line

g(α) = s2(c−α) is decreasing. The

minα max{s1α , s2(c−α)} occurs where the lines intersect,

i.e., at

α =
s2c

s1 + s2

,

which gives

min
α ,β

max{s1α , s2β} =
s1s2c

s1 + s2

=
1

1
s1

+ 1
s2

c .
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Corollary:

If piecewise expanding τ satisfies

η = max
1≤i<q

(

1

si

+
1

si+1

)

< 1 ,

then for arbitrary small interval J the largest connected

component of τn(J) grows as η−nm(J) until it contains a

whole domain Ii of one of the branches of τ .
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Lower bound for the densities

For one transformation density is bounded away from 0

(Keller 1978, Kowalski 1979).

It is possible to construct a family of piecewise expanding

maps τn with slopes |τ ′
n|> 2, with acims µn = fnm,

converging to the standard W-map such that supp fn = [0,1]
and µn → δ{1/2} ∗-weakly. Then, there is no uniform lower

bound for densities fn (Li, preprint).
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