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Symplectic difference systems

Symplectic difference system:

(SDS) zk+1 = Skzk ,

where z ∈ R2n, S ∈ R2n×2n is symplectic, i.e.

ST
k JSk = J , J =

(
0 I
−I 0

)

(SDS) in entries:

z =

(
x
u

)
, S =

(
A B
C D

)

xk+1 = Akxk + Bkuk , uk+1 = Ckxk +Dkuk

x ,u ∈ Rn, A,B, C,D ∈ Rn×n.
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Symplecticity in terms of A,B, C,D:

ATC − CTA = 0,

BTD −DTB = 0,

ATD − CTB = I,

equivalently (STJS = J iff SJST = J )

ABT − BAT = 0,

CDT −DCT = 0,

ADT − BCT = I.
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Particular cases of (SDS)

Sturm-Liouville difference equation (rk 6= 0):

(SL) ∆(rk ∆xk ) + pkxk+1 = 0.

Substitution u = r∆x :

∆xk =
1
rk

uk , ∆uk = −pkxk+1

i.e., (
xk+1

uk+1

)
=

(
1 1

rk

−pk 1− pk
rk

)(
xk

uk

)
.
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Linear Hamiltonian difference system:

∆xk = Akxk+1 + Bkuk , ∆uk = Ckxk+1 − AT
k uk ,

where A,B,C ∈ Rn×n, I − A invertible, BT = B, CT = C.
(

xk+1

uk+1

)
=

(
(I − A)−1 (I − A)−1B

C(I − A)−1 C(I − A)−1B + I − AT

)

k

(
xk

uk

)

and the matrix is the last system is symplectic.
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Linear Hamiltonian differential systems

Linear Hamiltonian differential system:

(LHdS) z ′ = λJH(t)z

z =
(x

u

)
∈ C2n, H ∈ C2n×2n is Hermitean and periodic, i.e.,

H∗(t) = H(t), H(t + T ) = H(t).

- M. I. Krein, Stablility zones... 1955, “Traffic rules” for eigenvalues
of the monodromy matrix of (LHdS).
λ0 is the point of strong stability of (LHdS) if there exists δ > 0
such that (LHdS) is stable, i.e., all solutions are bounded on R, for
|λ− λ0| < δ.
The set of strong stability points of (LHdS) is open, i.e., it consists
of (finite or infinite) system of disjoint open intervals.
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System of positive type:

H(t) ≥ 0, t ∈ [0,T ],

∫ T

0
H(t) dt > 0.

Here > 0 resp. ≥ 0 means positive (semi) definiteness of a given
Hermitean matrix.
Let Z ∈ C2n×2n be the fundamental matrix of (LHdS), Z (T ) is
called the monodromy matrix of (LHdS).
ρ the eigenvalue of Z (T ) (= the multiplier of (LHdS)), Z (T )ξ = ρξ,
z(0) = ξ, then

z(t + T ) = ρz(t).
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J -monotonicity

We suppose that (LHdS) is of positive type.
Fundamental formula: Z the fundamental matrix of (LHdS), then

Z ∗(s)J Z (s)|t+T
t = (λ̄− λ)︸ ︷︷ ︸

−2i Imλ

∫ t+T

t
Z ∗(s)H(s)Z (s) ds

J -monotonicity of the fundamental matrix Z :

i[Z ∗(T )J Z (T )]− J ] >, =, < 0

depending on whether Imλ > 0, = 0, < 0.
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Periodic symplectic difference system

(SDS) zk+1 = Sk (λ)zk

where Sk+N(λ) = Sk (λ) for λ ∈ C and k ∈ Z.

(H1) There exist Hermitean matrices Ak (λ) ∈ C1:

S∗k (λ)JSk (λ)− J = (λ̄− λ)Ak (λ), J =

(
0 I
−I 0

)
.

In particular, for λ ∈ R the matrices Sk are J -unitary, i.e.,

S∗k (λ)JSk (λ) = J
and for S(λ) ∈ R2n×2n symplectic.

(H2) Sk (0) = I, Sk (λ) are differentiable, and S[1]
k := S ′(0) satisfy

(S[1]
k )∗J + JS[1]

k = 0.
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Second order matrix difference system

∆2xk−1 + λ2Pkxk = 0, P∗k = Pk , Pk+N = Pk .

- A. Halanay, V. Rasvan, Dynam Systems Appl. 1999.

The substitution uk = 1
λ∆xk , z =

(x
u

)
,

zk+1 =


I + λ

(
0 I
−Pk 0

)

︸ ︷︷ ︸
S[1]

+λ2
(
−Pk 0

0 0

)



︸ ︷︷ ︸
Sk (λ)

zk

Assumptions (H1), (H2) are satisfied.
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In particular,

(H1):

S∗(λ)JS(λ) = J + (λ̄− λ)

(
P + |λ|2P∗P λ̄P∗

−λP I

)

(H2):

S ′(0) = S[1] =

(
0 I
−P 0

)

and

−JS[1] =

(
P 0
0 I

)
,

in particular, −JS[1]
k ≥ 0 and J ∑N−1

k=0 S[1]
k > 0 if and only if

P [1]
k ≥ 0, k = 0, . . . ,N − 1

N−1∑

k=0

Pk > 0.
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Hamiltonian difference system

∆

(
xk

uk

)
= λJ

(
−Ck A∗k
Ak Bk

)

︸ ︷︷ ︸
Hk

(
xk+1

uk

)

with symmetric matrices B,C

- V. Rasvan, Arch. Math. (Brno), 2000

(
xk+1

uk+1

)
=

(
(I − λA)−1 λ(I − λA)−1B

λC(I − λA)−1 λ2C(I − λA)−1B + I − λA∗

)

k︸ ︷︷ ︸
Sk (λ)

(
xk

uk

)
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We have

S(λ) = I + λ

(
A B
C −A∗

)

︸ ︷︷ ︸
JH

+S[2](λ)

with

S [2]k (λ) =

[
(I − λA)−1 − I − λA λ

[
(I − λA)−1B − B

]

λ
[
C(I − λA)−1 − C

]
λ2C(I − λA)−1B

]
= o(λ)

as λ→ 0 and

S∗(λ)JS(λ) = J + (λ̄− λ)D∗(λ)

(
−C A∗

A B

)

︸ ︷︷ ︸
H

D(λ),
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where

D(λ) =

(
(I − λA)−1 λ(I − λA)−1B

0 I

)
.

In particular, for solutions of (LHS) we have

z∗kJ zk |Nk=0 = (λ̄− λ)
N−1∑

k=0

(
xk+1

uk

)∗
Hk

(
xk+1

uk

)
.
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“Exponential” case

The case Sk (λ) = Sλ
k = eλ log Sk with symplectic matrices Sk ,

Sk+N = Sk . Denote Rk := log Sk . Then R∗kJ + JRk = 0 and

Sk (λ) =
∞∑

j=0

R j
k
λj

j!
.

Then (suppressing the index k )

S∗(λ)JS(λ) = J + (λ̄− λ)A(λ),

where

A(λ) =
∞∑

j=0

(λ̄− λ)2j

(2j + 1)!
(R∗)j(−JR)R j

+
∞∑

j=1

(−1)j (λ̄− λ)2j−1

(2j)!
(R∗)jJR j ≥ 0

if and only if −JR = −JS ′(0) ≥ 0.
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Central stability zone

We consider our symplectic system in the form

(SDS) zk+1 = [I + λS[1]
k + S[2](λ)]︸ ︷︷ ︸
Sk (λ)

zk ,

with (H1) and (H2), in particular

(S[1]
k )∗J = JS[1]

k = −J ∗S[1]
k , k = 0, . . . ,N − 1,

where S[2](λ) = o(λ) as λ→ 0 and Sk+N(λ) = Sk (λ). Then we have
for the monodromy matrix

UN(λ) = SN−1(λ) · · · S0(λ) = I + λ

(
N−1∑

k=0

S[1]
k

)
+ o(λ)

as λ→ 0.
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Central stability zone

We denote

S [1] =
N−1∑

k=0

S[1]
k .

Theorem. Let
−JS [1] > 0

and suppose that the eigenvalues sj of S [1] are distinct. Then there
exists l > 0 such that solutions of (SDS) are bounded for |λ| < l , i.e.,
the interval (−l , l) is contained in the central stability zone of (SDS).

The theorem requires distinct eigenvalues of the matrix S [1] and
its proof does not need any assumption on J monotonicity of the
monodromy matrix.
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Positive type system

Next, we don’t suppose that the eigenvalues of S [1] are distinct, we
suppose that (SDS) is of positive type:

−JS[1]
k ≥ 0, k = 0, . . . ,N − 1, −J

(
N−1∑

k=0

S [1]k

)
> 0.

and, moreover (compare (H1))

S∗k (λ)JSk (λ) = J + (λ̄− λ) [−JS[1]
k + Bk (λ)]︸ ︷︷ ︸
Ak (λ)

with

(B) z∗kBk (λ)zk ≥ 0, k = 0, . . . ,N − 1,

for any solution of (SDS).
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Krein’s traffic rules

|ρ| = 1 the eigenvalue of the monodromy matrix UN , L is the
corresponding eigenspace.

If iu∗J u > 0 (< 0) for ∀u ∈ L, then the multiplier ρ is called of the
1-st (=positive) kind (2-th kind (negative) kind)

If ∃0 6= u ∈ L: u∗J u = 0, ρ is the multiplier of indefinite (=mixed)
type.

If (SDS) is of positive type and (B) holds, there are only multipliers
of definite type.

λ = 0 is the stability point of (SDS), UN(0) = I. Multipliers of the
positive type (there is n of them) move clockwise and of negative
type move counterclockwise when λ increases and stay on the
unit circle.
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Traffic rules cont.

A multiplier ρ(λ) my exit the unit circle only when the multipliers of
different kind meet on the unit circle, i.e., at least of them comes
through the point [−1,0], which is the same as that the
antiperiodic BVP

zk+1 = Sk (λ)zk , zN + z0 = 0

has a solution, i.e. λ is a solution of

(U) det
[
UN(λ) + I

]
= 0

Estimate of the length of the central stability zone: Let Λ+ be the
minimal positive root of (U) and Λ− the maximal negative root of
(U). Then the interval (Λ−,Λ+) is contained in the central stability
zone of (SDS).
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Periodic symplectic systems Ondřej Došlý, Brno, Czech Republic


