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Bohl-Perron Type Theorems

Bohl (1913, J.Reine Angew.Math)
Perron (1930):
If the solution of the initial value problem

dX

dt
= AX + f ,X (0) = 0

is bounded for any bounded f , then the solution of the
homogeneous equation is exponentially stable.
Equations in a Banach space: M. Krein (1948)
Delay equations: Azbelev, Tyshkevich, Berezansky, Simonov,
Chistyakov (1970-1993)
Impulsive delay equations: Anokhin, Berezansky, Braverman (1995)
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Difference equations

Bohl-Perron type result for a nondelay difference equation:
[1] C.V. Coffman and J.J. Schäffer, Dichotomies for linear
difference equations, Math. Ann. 172 (1967), pp. 139–166.
[2] B. Aulbach, N. Van Minh, The concept of spectral dichotomy
for linear difference equations. II, J. Differ. Equations Appl. 2
(1996), 251–262.
Theorem [2]. If a solution of the equation

xn+1 = Anxn + fn (1)

belongs to ℓp, 1 ≤ p ≤ ∞, for any sequence fn in the same space
ℓp, then the solution of the homogeneous equation

xn+1 = Anxn (2)

decays exponentially with the growth of n.
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The case of different spaces

If for any fn ∈ ℓ1 the solution is bounded, then the equation is
stable (but, generally speaking, not exponentially). Suppose a
solution of xn+1 = Anxn + fn belongs to ℓ∞ for any fn from ℓp,
1 < p < ∞; what kind of stability can be deduced for
xn+1 = Anxn?
Quite recently it was proved in

[3] M. Pituk, A criterion for the exponential stability of linear
difference equations, Appl. Math. Let. 17 (2004), 779–783.

that under the above conditions the solution is exponentially stable.
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Some other relevant references

◮ K.M. Przyluski, Remarks on the stability of linear infinite-dimensional discrete-time systems, J. Differ.
Equ. 72 (1988), pp. 189–200.

◮ S. Elaydi and S. Murakami, Asymptotic stability versus exponential stability in linear Volterra difference
equations of convolution type, J. Difference Equ. Appl. 2 (1996), pp. 401–410.

◮ M. Pituk, Global asymptotic stability in a perturbed higher order linear difference equation, Comput.
Math. Appl. 45 (2003), 1195–1202.

◮ V. B. Kolmanovskii, E. Castellanos-Velasco, and J.A. Torres-Muñoz, A survey: stability and boundedness of
Volterra difference equations, Nonlinear Anal. 53 (2003), pp. 861–928.

◮ H. Matsunaga and S. Murakami, Some invariant manifolds for functional difference equations with infinite
delay, J. Difference Equ. Appl. 10 (2004), pp. 661–689.

◮ B. Sasu and A. L. Sasu, Stability and stabilizability for linear systems of difference equations, J. Differ.
Equations Appl. 10 (2004), pp. 1085–1105.

◮ H. Matsunaga and S. Murakami, Asymptotic behavior of solutions of functional difference equations, J.
Math. Anal. Appl. 305 (2005), pp. 391–410.

◮ F. Cardoso and C. Cuevas, Exponential dichotomy and boundedness for retarded functional difference
equations, J. Difference Equ. Appl. 15 (2009), pp. 261–290.
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Outline of Bohl-Perron type methods

◮ Application of solution representations.
Some proofs are based on the solution representation

x(n) =
n∑

k=1

X (n, k + 1)f (k), (3)

where X (n, k) satisfies the semigroup equality

X (n, k) = X (n, i)X (i , k), n > i > k. (4)

This is relevant for first order difference equations only.

◮ Results are applied to study stability properties.
(stability ⇔ a solution belongs to a certain space)
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Solution representation

For the delay difference equation

x(n + 1) =
n∑

k=−d

A(n, k)x(k) + f (n), x(n) = ϕ(n), n ≤ 0, (5)

with d = 0 (no prehistory) the solution representation for (5) is

x(n) = X (n, 0)x(0) +
n∑

k=0

X (n, k + 1)f (k)

(S. Elaydi,1994, S. Elaydi, S. Zhang,1994). Here
X (n, k) = 0, n < k,X (k, k) = I (an identity operator). No
semigroup equality is valid. For difference equations, there are two
possible solutions of the problem.
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Difference and inverse operators

First, we can follow the steps of the proofs for delay differential
equations.
Introduce the difference operator for the zero initial conditions

L ({x(n)}∞n=1) =

{
x(n + 1)−

n∑

k=1

A(n, k)x(k)

}
,

x(0) = 0, and the Cauchy operator

C ({f (n)}∞n=0) =

{
y(n) =

n−1∑

l=0

X (n, l + 1)f (l)

}∞

n=0

(at this step we do not specify the space of sequences).
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Assumptions

We consider an assumption that the sums of the operators A(n, l)
are uniformly bounded

(a1) there exists K > 0, such that sup
n≥0

n∑

l=−d

|A(n, l)| ≤ K ;

and a stronger restriction (the delay is also bounded)
(a2) there exists T > 0 such that A(n, l) = 0 whenever n − l > T
and A(n, l) are uniformly bounded: |A(n, l)| ≤ M for all n, l .

Lemma 1. Suppose (a2) holds. Then the difference operator is a
bounded operator in the space ℓp, 1 ≤ p ≤ ∞.
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Boundedness of delay is necessary

Unlike ℓ∞, where the boundedness of the delay is not necessary for
the action of the operator, in ℓp it is crucial as the following
example shows.

Example 1. For the equation x(n + 1) = x(n)− x(2), n ≥ 2 the
operator

L({x(n)}) = {x(n) − x(2)}
does not act in ℓp : for any sequence {x(n)} ∈ ℓp such that
x(2) 6= 0 the resulting sequence does not tend to zero.

Elena Braverman University of Calgary, Canada Stability of difference equations with an infinite delay



Bohl-Perron Theorems - DDE Approach
Reduction Method

Reduction for Infinite Delays

Introduction
Stability
Main Theorem - Bounded Delay

Stability

Theorem 1. Suppose (a1) holds. Then the uniform estimate
|X (n, k)| ≤ C holds if and only if for any {f (n)} ∈ ℓ1 the solution
{x(n)} with the zero initial conditions is bounded {x(n)} ∈ ℓ∞.

Corollary 1. If (a1) holds and for any {f (n)} ∈ ℓ1 the solution
with the zero initial condition is bounded, then the equation is
stable.

It is similar to the result by Aulbach, Van Minh for first order
equations.
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Bohl-Perron Theorem for Delay Difference Equation

Theorem 2. Suppose (a2) holds and for every sequence
{f (n)} ∈ ℓp, 1 ≤ p ≤ ∞, the solution {x(n)} with the zero initial
condition also belongs to ℓp.
Then there exist N > 0, λ > 0 such that the fundamental function
X satisfies

|X (n, l)| ≤ Ne−λ(n−l).

Corollary 2. Under the conditions of Theorem 2 the equation is
exponentially stable.
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Boundedness of the delay is necessary

Example 2. Consider the equation with an unbounded delay

x(n + 1) =
1

2
x(n) + x(0) + f (n).

Then for any right hand side bounded by f (|f (n)| ≤ f ) the
solution is bounded by 2(|x(0)| + f ) (prove by induction!).
However solutions of the corresponding homogeneous equation

x(n + 1) =
1

2
x(n) + x(0)

do not decay exponentially: for example, a solution with x(0) = 1
(a scalar case) is increasing and tends to 2.
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Illustration for equations with two delays

As an illustration, consider the autonomous equation with 2 delays:

x(n + 1)− x(n) = −a0x(n)− a1x(n − h1)− a2x(n − h2), (6)

where h1 > 0, h2 > 0.
Corollary. Suppose at least one of the following conditions holds:
1) 1 > a0 > 0, |a1|+ |a2| < a0;

2) 0 < a0 + a1 + a2 < 1, |a1|h1 + |a2|h2 <
a0 + a1 + a2

|a0|+ |a1|+ |a2|
;

3) 0 < a0 + a2 < 1, |a2|h2 <
a0 + a2 − |a1|

|a0|+ |a1|+ |a2|
.

Then Eq. (6) is exponentially stable.
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Known stability results - Cooke and Győri

Cooke, Győri (1994):
the equation

x(n + 1)− x(n) = −
N∑

k=1

akx(n − hk), ak ≥ 0, hk ≥ 0,

is asymptotically stable if
N∑

k=1

akhk < 1.
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Known stability results - Elaydi, Kocić and Ladas

Elaydi (1994), Kocić and Ladas (1993):
the equation

x(n + 1)− x(n) = −a0(n)x(n)−
N∑

k=1

ak(n)x(gk(n)), gk(n) ≤ n,

is asymptotically stable if for some ε > 0

N∑

k=1

|ak(n)| ≤
{

a0(n)− ε, 0 < a0(n) < 1,
2− a0(n)− ε 1 ≤ a0(n) < 2.
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Known stability results - Győri and Pituk

Győri, Pituk (1997):
the equation

x(n + 1)− x(n) = −a(n)x(g(n)), a(n) ≥ 0, g(n) ≤ n

is exponentially stable if

∞∑

n=1

a(n) = ∞, lim sup
n→∞

(n − gk(n)) < ∞,

lim sup
n→∞

n−1∑

l=mink{g(n)}
a(l) < 1.
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Known stability results - Győry, Hartung

Győry, Hartung (2001):
the equation

x(n + 1)− x(n) = −
N∑

k=1

akx(gk(n)), ak ≥ 0, gk(n) ≤ n

is exponentially stable if

lim sup
n→∞

(n−gk(n)) < ∞,
N∑

k=1

ak lim sup
n→∞

(n−gk(n)) < 1+
1

e
−

N∑

k=1

ak .
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Example - comparison to known results

Example 3. Consider the equation

x(n + 1)− x(n) = −0.5x(n)− 0.2x(n− 5)− 0.3x(n− 1).

Here a0 = 0.5, a1 = 0.2, a2 = 0.3, h1 = 5, h2 = 1.
a1h1 + a2h2 = 1.3 > 1 ⇒ the conditions of Győri and Cooke do not work.
Since a1 + a2 = 0.5 = a0 and a0 < 1, the conditions of Elaydi, Kocić and
Ladas (a1 + a2 < a0 − ε) are not satisfied.
a1h1 + a2h2 = 1.3 < 1 + 1/e − a1 − a2 (Győri and Hartung) does not
hold as well.
Part 3 of the corollary works:

0 < a0 + a2 < 1, a2h2 = 0.3 <
a0 + a2 − a1
a0 + a1 + a2

= 0.6.
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Some Questions: Methods and Results

◮ Is it possible to use the same method to equations with
unbounded delays?

◮ The technique used is similar to delay differential equations.
Can we use a different method to obtain the same result?

◮ The answer to both questions is positive.
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Reduction (a different method is possible)

Consider the non-autonomous difference equation of a constant order

x(n + 1) =
r∑

k=0

A(n, k)x(n − k) + f (n), n ≥ 0. (7)

If Y (n), Y0, F (n) and D(n) are defined as

Y (n) =

2

6

6

4

y1
y2

. . .
yr+1

3

7

7

5

=

2

6

6

4

x(n)
x(n − 1)

. . .
x(n − r)

3

7

7

5

, Y0 =

2

6

6

4

ϕ(0)
ϕ(−1)

. . .
ϕ(−r)

3

7

7

5

, F (n) =

2

6

6

4

f (n)
0

. . .
0

3

7

7

5

,

D(n) =

2

6

6

4

A(n, 0) A(n, 1) . . . A(n, r − 1) A(n, r)
I 0 . . . 0 0
0 I . . . 0 0
0 0 . . . I 0

3

7

7

5

, (8)

then Eq. (7) with initial conditions becomes

Y (n + 1) = D(n)Y (n) + F (n), Y (0) = Y0. (9)
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Let us note the following.

1. If sup
n≥0

n∑

k=max{n−r ,0}
|A(n, k)| ≤ M for some M > 0, then in the

induced norm |D(n)| ≤ M.
2. {Y (n)} ∈ ℓp if and only if {x(n)} ∈ ℓp, where ℓp is over Br+1

and B, respectively.
3. Exponential decay of |x(n)| is equivalent to the exponential
decay of |Y (n)|.
Thus all results known for the first order equation can be applied
to the delay equation with a bounded delay, in particular, the
Bohl-Perron theorem.
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Exponential Memory Decay

Consider the linear difference (Volterra) equation

x(n + 1) =
n∑

k=0

A(n, k)x(k) + f (n), n ≥ 0, (10)

Let us introduce the restriction that the memory decays exponentially:
(a3) there exist M > 0, ζ > 0, such that |A(n, k)| ≤ Me−ζ(n−k).
wh
Example 4. The equation x(n + 1) =

∑n
k=0 aλ

kx(n − k), 0 < λ < 1,
satisfies (a3) with M = |a|, ζ = − lnλ.

Example 5. The equation x(n + 1)− x(n) = a exp{−βn}x([αn]),
0 < α < 1, β > 0, with a “piecewise constant delay” also satisfies (a2).

Here [t] is the maximal integer not exceeding t,

M = max{1, |a|}, ζ = β, since −βn ≤ −β(n − [αn]) for any n ≥ 1.
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Bohl-Perron Theorem for Equations with Infinite Delay

Theorem 3. Suppose (a3) holds and for every bounded sequence
{f (n)} ∈ ℓ∞ the solution {x(n)} of (10) with the zero initial
condition is also bounded: {x(n)} ∈ ℓ∞.
Then there exist N > 0, λ > 0, such that the fundamental function
X of (10) satisfies the exponential estimate

|X (n, l)| ≤ Ne−λ(n−l). (11)

The proof uses the same ideas as for delay differential equations, in
particular, applies the solution representations and the Uniform
Boundedness Principle.
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Some conclusions. What is next?

Under (a3) the exponential estimate of the fundamental function
implies the exponential stability of the solution.

◮ The same method which was applied to equations with
bounded delays can be applied to unbounded (but finite
delays) - under certain conditions (exponential decay of the
kernel).

◮ For equations with finite delays, the reduction technique was
justified (with some inaccuracies in the proof of the
equivalence) which allows to consider first order equations in
Banach spaces.

◮ Can we apply the reduction technique to equations with
unbounded delays?

◮ Even equations with infinite memory can be considered this
way!
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We consider systems of linear difference equations with an infinite delay

x(n + 1) = L(n)xn + f (n), n ≥ 0, (12)

which in particular include Volterra difference systems

x(n + 1) =
n∑

k=−∞
L(n, n − k) x(k) + f (n), n ≥ 0. (13)

It is assumed that x(·) is a discrete function from Z to a (real or
complex) Banach space X , f (·) is a function from Z+(= N ∪ {0}) to X ,
where | · | stands for the norm in X , xn is the semi-infinite prehistory
sequence {x(n), x(n − 1), · · · , x(n +m), · · · }, m ≤ 0. The sequence
x0 = {x(n +m)}0m=−∞ of the initial conditions belongs to an
exponentially weighted ℓ∞-space Bγ (the phase space): for certain γ ∈ R

|x0|Bγ := sup
m≤0

|x(m)|eγm < ∞

L(n), n ≥ 0 are bounded linear mappings from Bγ to X .
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Let us study relations between uniform exponential stability,
uniform stability, and ℓp-input ℓq-state stability (or shorter
(ℓp, ℓq)-stability) of (12). The problem of finding Bohl-Perron type
stability criteria for difference systems with infinite delay naturally
requires the phase space settings. We comprehensively solve this
problem in the exponentially fading phase spaces Bγ , γ > 0.
The method is based on the reduction of the difference system
with infinite memory (12) to a first order system with states in the
phase space. For systems with bounded delay we have already
discussed this method. The main difficulty is the fact that the
(ℓp, ℓq)-stability property of (12) is weaker than that of the
reduced first order system.

Elena Braverman University of Calgary, Canada Stability of difference equations with an infinite delay

Bohl-Perron Theorems - DDE Approach
Reduction Method

Reduction for Infinite Delays

Introduction
Main result
Examples and discussion
References

The Perron property and boundedness

Our main objects are the system (12) of nonhomogeneous linear
functional difference equations and the associated homogeneous
system

x(n + 1) = L(n)xn, n ∈ Z+. (14)

The nonhomogeneous system (12) is called ℓp-input ℓq-state stable
((ℓp, ℓq)-stable, in short) if x(·, 0, 0B ; f ) ∈ ℓq(X ) for any
f ∈ ℓp(X ).
Theorem 4. Assume that 1 ≤ p, q ≤ ∞, γ ∈ R, and function
L : Z+ → L(Bγ ,X ) defines system (12). If (12) is (ℓp, ℓq)-stable,
then

‖x(·, 0, 0B ; f )‖q ≤ Kp,q,L‖f ‖p (15)

for a certain constant Kp,q,L ≥ 1 depending on L.
The proof is also based on the closed graph principle.
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The Main Theorem - Infinite Delay

Theorem 5.Let γ > 0 and let L : Z+ → L(Bγ ,X ) define system
(12). phase space Bγ . Assume that the pair (p, q) is such that

1 ≤ p ≤ q ≤ ∞ and (p, q) 6= (1,∞). (16)

Then the following statements are equivalent:

(i) System (14) is UES in X with respect to (w.r.t.) Bγ .

(ii) System (14) is UES in Bγ .

(iii) System (12) is (ℓp, ℓq)-stable and there exists m ∈ Z− such
that

‖L(·) Pr
[−∞,m]

‖∞ := sup
n∈Z+

‖L(n) Pr
[−∞,m]

‖Bγ→X < ∞ (17)
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Some Comments and Remarks

The proof of this theorem shows that if any of statements (i)-(iii) is
fulfilled, then supn∈Z+ ‖L(n)‖Bγ→X < ∞.
Let γ > 0 and let a function L : Z+ → L(Bγ ,X ) define system (12).
Assume that

‖L(·) Pr
[−∞,m]

‖∞ := sup
n∈Z+

‖L(n) Pr
[−∞,m]

‖Bγ→X < ∞

holds. Then (ℓp, ℓq)-stability of (12) for a certain pair (p, q) satisfying
(16) implies the (ℓp, ℓq)-stability of (12) for all (p, q) satisfying (16).
Since UE-stability does not depend on the choice of p and q in the
(ℓp, ℓq)-stability property we get the following:

Let γ > 0 and let a function L : Z+ → L(Bγ ,X ) define system (12).

Assume that (17) holds. Then (ℓp, ℓq)-stability of (12) for a certain pair

(p, q) satisfying (p, q) 6= (1,∞) implies the (ℓp , ℓq)-stability of (12) for

all (p, q) satisfying (p, q) 6= (1,∞).
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Bounded Solutions for ℓ1 RHS

All the results can be applied to equations with a bounded delay.
What happens with the pair (p, q) = (1,∞)? The result coincides
with the relevant theorem obtained by Aulbach, Van Minh (1996).
Theorem 6. Let γ > 0 and let a function L : Z+ → L(Bγ ,X )
define system (12). Then the following statements are equivalent:

(i) System (14) is uniformly stable in Bγ .

(ii) System (12) is (ℓ1, ℓ∞)-stable and condition (17) is fulfilled.
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Assumptions are Necessary

Exponential decay of the memory is required.
Example 6. Consider

x(1) = f (0), x(n + 1) = a(n)x(1) + f (n), n ∈ N, (18)

then for the solution x(n) = x(n, 0, 0B; f ) with f ∈ ℓp, we get

x(n + 1) = a(n)f (0) + f (n), n ∈ N.

For instance, if p = ∞, then any solution is bounded for a bounded {f }.
However, the relevant homogeneous equation is obviously not UES.
A more sophisticated example shows that the uniform boundedness of the
projections cannot be replaced by the less restrictive condition

sup
n∈Z+

‖L(n) Pr
[−∞,mn]

‖Bγ→X < ∞ (19)

with non-positive mn such that lim
n→∞

mn = −∞.
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Assumptions are Necessary

Also, the phase space decay is required.
Example 7. The system

x(n + 1) = x(n) + a(n)x(0) + f (n). (20)

One can see that:

(i) system (20) is (ℓ1, ℓ∞)-stable,

(ii) ‖L(·) Pr[−∞,−1] ‖p < ∞,

(iii) but the homogeneous system associated with (20) is not US
in X w.r.t. B0.

Stability in the non-decaying phase spaces is still to be studied!
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Open Problem: Application to Control

x(n + 1) =
+∞∑

j=0

K (j)x(n − j) + Dv(n)

y(n) = Ex

N(n)

v(n) y(n)

Here v(n) = N(n)y(n), v is an input, y is the output.
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Outline

◮ Let γ > 0. Assume that either p 6= 1 or q 6= ∞. Then the
homogeneous system is uniformly exponentially stable in Bγ if and
only if the system with the right-hand side is (ℓp, ℓq)-stable and

sup
n≥0

∑

k≥l

ekγ‖L(n, k)‖X→X < ∞ for some positive integer l . (21)

The homogeneous system is uniformly stable in Bγ if and only if the
non-homogeneous system is (ℓ1, ℓ∞)-stable and (21) holds.

◮ Under (21), (i) (ℓp , ℓq)-stability does not depend on p and q
(excluding the case (p, q) = (1,∞)), (ii) exponential stability in Bδ

does not depend on the choice of δ ∈ (0, γ].

◮ It is essential that we consider exponentially fading phase spaces
Bγ , γ > 0. To some extent, the assumptions of the theorems are
necessary.
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Thank you for your attention!

Questions?
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