P-recursive moment sequences of piecewise D-finite functions and Prony-type algebraic systems

Dmitry Batenkov Gal Binyamini Yosef Yomdin

Weizmann Institute of Science, Israel

18th International Conference on Difference Equations and Applications July 23-27, 2012, Barcelona

Prony-type systems

D.Batenkov,G.Binyamini,Y.Yomdin (WIS Moments of piecewise functions

■ト 4 ■ト ■ つへで ICDEA 2012 2 / 27

(日) (四) (日) (日) (日)

Linear recurrences with constant coefficients

Definition

The sequence $\{m_k\}_{k=0}^{\infty} \in \mathbb{C}^{\omega}$ is \mathbb{C} -recurrent if $\exists A_0, \ldots, A_d \in \mathbb{C}$ such that $\forall k \in \mathbb{N}$:

$$A_0 m_k + A_1 m_{k+1} + \dots + A_d m_{k+d} = 0.$$

Linear recurrences with constant coefficients

Definition

The sequence $\{m_k\}_{k=0}^{\infty} \in \mathbb{C}^{\omega}$ is \mathbb{C} -recurrent if $\exists A_0, \ldots, A_d \in \mathbb{C}$ such that $\forall k \in \mathbb{N}$:

$$A_0m_k + A_1m_{k+1} + \dots + A_dm_{k+d} = 0.$$

General form of solution

Exponential polynomials (Binet's formula)

$$m_k = \sum_{i=1}^{\mathscr{K}} P_i(k) \, \xi_i^k$$

where $\{\xi_i\}$ are the roots of the characteristic polynomial $A_0 + A_1x + \cdots + A_dx^d$.

Prony system

$$m_k = \sum_{i=1}^{\mathscr{K}} P_i(k) \, \xi_i^k$$

Reconstruction problem

Given few initial terms m_0, \ldots, m_N , reconstruct $\{\xi_i, P_i\}$.

(日) (個) (目) (目) (目) (目)

Prony system

$$m_k = \sum_{i=1}^{\mathscr{K}} P_i(k) \, \xi_i^k$$

Reconstruction problem

Given few initial terms m_0, \ldots, m_N , reconstruct $\{\xi_i, P_i\}$.

Examples

Padé approximation: {m_k} are Taylor coefficients of a rational function with poles at {ξ_i⁻¹}

< 同 > < 回 > < 回 > <

Prony system

$$m_k = \sum_{i=1}^{\mathscr{K}} P_i(k) \, \xi_i^k$$

Reconstruction problem

Given few initial terms m_0, \ldots, m_N , reconstruct $\{\xi_i, P_i\}$.

Examples

- Padé approximation: {m_k} are Taylor coefficients of a rational function with poles at {ξ_i⁻¹}
- High resolution methods in Signal Processing

▲撮♪ ★ 注♪ ★ 注♪ ……注

• Problem: recovering a signal which has been sampled below Nyquist rate

- Problem: recovering a signal which has been sampled below Nyquist rate
- Assumption: the signal is finite-parametric. For example:

$$x(t) = \sum_{j=0}^{\mathscr{K}} a_j \delta(t - \xi_j)$$

- Problem: recovering a signal which has been sampled below Nyquist rate
- Assumption: the signal is finite-parametric. For example:

$$x(t) = \sum_{j=0}^{\mathcal{K}} a_j \delta(t - \xi_j)$$

• Method: choose a sampling kernel h(t) with certain algebraic properties s.t.

$$y_n = \langle h(t-n), x(t) \rangle = \sum_{j=0}^{\mathscr{K}} a_j e^{-\imath \xi_j n}$$

- Problem: recovering a signal which has been sampled below Nyquist rate
- Assumption: the signal is finite-parametric. For example:

$$x(t) = \sum_{j=0}^{\mathcal{K}} a_j \delta(t - \xi_j)$$

• Method: choose a sampling kernel h(t) with certain algebraic properties s.t.

$$y_n = \langle h(t-n), x(t) \rangle = \sum_{j=0}^{\mathcal{K}} a_j e^{-\imath \xi_j n}$$

• Generalized to piecewise polynomials

$$m_k = \sum_{i=1}^{\mathcal{K}} P_i(k) \,\xi_i^k; \qquad \sum_{i=1}^{\mathcal{K}} \deg P_i = C$$

D.Batenkov,G.Binyamini,Y.Yomdin (WIS Moments of piecewise functions

E ► 4 E ► E ∽ Q (? ICDEA 2012 6 / 27

<ロ> (日) (日) (日) (日) (日)

$$m_k = \sum_{i=1}^{\mathcal{H}} P_i(k) \,\xi_i^k; \qquad \sum_{i=1}^{\mathcal{H}} \deg P_i = C$$

Solve Hankel-type system

ICDEA 2012 6 / 27

$$m_k = \sum_{i=1}^{\mathscr{K}} P_i(k) \, \xi_i^k; \qquad \sum_{i=1}^{\mathscr{K}} \deg P_i = C$$

Solve Hankel-type system

$$\underbrace{\begin{bmatrix} m_0 & m_1 & \cdots & m_{C-1} \\ m_1 & m_2 & \cdots & m_C \\ \vdots & \vdots & \vdots & \vdots \\ m_{C-1} & m_{d+1} & \cdots & m_{2C-1} \end{bmatrix}}_{\substack{def \\ = M}} \times \begin{bmatrix} A_0 \\ A_1 \\ \vdots \\ A_{C-1} \end{bmatrix} = - \begin{bmatrix} m_C \\ m_{C+1} \\ \vdots \\ m_{2C} \end{bmatrix}$$

2 $\{\xi_j\}$ are the roots of $x^d + A_{d-1}x^{d-1} + \dots + A_1x + A_0 = 0$.

ICDEA 2012 6 / 27

イロト イポト イヨト イヨト

$$m_k = \sum_{i=1}^{\mathcal{K}} P_i(k) \,\xi_i^k; \qquad \sum_{i=1}^{\mathcal{K}} \deg P_i = C$$

Solve Hankel-type system

 $\underbrace{\begin{bmatrix} m_0 & m_1 & \cdots & m_{C-1} \\ m_1 & m_2 & \cdots & m_C \\ \vdots & \vdots & \vdots & \vdots \\ m_{C-1} & m_{d+1} & \cdots & m_{2C-1} \end{bmatrix}}_{\substack{def \\ = M}} \times \begin{bmatrix} A_0 \\ A_1 \\ \vdots \\ A_{C-1} \end{bmatrix} = - \begin{bmatrix} m_C \\ m_{C+1} \\ \vdots \\ m_{2C} \end{bmatrix}$

{ξ_j} are the roots of x^d + A_{d-1}x^{d-1} + ··· + A₁x + A₀ = 0.
 Coefficients of {P_i} are found by solving a Vandermonde-type linear system.

Subspace methods

Observations

- $M = V^T B V$, with V-confluent Vandermonde.
- The range of *M* and V are the same.
- V has the rotational invariance property:

$$V^{\uparrow} = V_{\downarrow} J$$

where J is the block Jordan matrix with eigenvalues $\{\xi_j\}$.

Subspace methods

Observations

- $M = V^T B V$, with V-confluent Vandermonde.
- The range of *M* and V are the same.
- V has the rotational invariance property:

$$V^{\uparrow} = V_{\downarrow} J$$

where J is the block Jordan matrix with eigenvalues $\{\xi_j\}$.

ESPRIT method

• Compute the SVD
$$M = W\Sigma V^T$$
.

- 2 Calculate $\Phi = W_{\perp}^{\#}W^{\uparrow}$.
- Set {ξ_i} to be the eigenvalues of Φ with appropriate multiplicities.

Prony systems - solvability

$$m_{k} = \sum_{j=1}^{\mathscr{K}} \sum_{i=0}^{l_{j}-1} a_{i,j} \underbrace{k(k-1)\cdots(k-i+1)}_{\substack{\text{def}\\ \equiv}(k)_{i}} \xi_{j}^{k-i}; \quad \sum_{j=1}^{\mathscr{K}} l_{j} = C; \ k = 0, 1, \dots, 2C-1$$

Theorem

The Prony system has a solution if and only if the sequence (m_0, \ldots, m_{2C-1}) is \mathbb{C} -recurrent of length at most C.

D.Batenkov,G.Binyamini,Y.Yomdin (WIS Moments of piecewise functions

★ 圖 ▶ | ★ 国 ▶ | ★ 国 ▶

Prony systems - solvability

$$m_{k} = \sum_{j=1}^{\mathscr{K}} \sum_{i=0}^{l_{j}-1} a_{i,j} \underbrace{k(k-1)\cdots(k-i+1)}_{\substack{\text{def}\\ \equiv}(k)_{i}} \xi_{j}^{k-i}; \quad \sum_{j=1}^{\mathscr{K}} l_{j} = C; \ k = 0, 1, \dots, 2C-1$$

Theorem

The Prony system has a solution if and only if the sequence (m_0, \ldots, m_{2C-1}) is \mathbb{C} -recurrent of length at most C.

Theorem

The parameters $\{a_{i,j}, \xi_j\}$ can be **uniquely** recovered from the first 2*C* measurements if and only if 1) $\xi_i \neq \xi_j$ for $i \neq j$, and 2) $a_{l_j-1,j} \neq 0$ for all $j = 1, ..., \mathcal{K}$.

Prony systems - local stability

Theorem (DB,YY 2010)

Assume that $\max_{k < C} |\Delta m_k| \le \varepsilon$ for sufficiently small ε . Then there exists a positive constant C_1 depending only on the nodes $\xi_1, \ldots, \xi_{\mathscr{K}}$ and the multiplicities $l_1, \ldots, l_{\mathscr{K}}$ such that for all $i = 1, 2, \ldots, \mathscr{K}$:

$$\begin{aligned} |\Delta a_{ij}| &\leq \begin{cases} C_1 \varepsilon & j = 0\\ C_1 \varepsilon \left(1 + \frac{|a_{i,j-1}|}{|a_{i,l_i-1}|} \right) & 1 \leq j \leq l_i - 1\\ |\Delta \xi_i| &\leq C_1 \varepsilon \frac{1}{|a_{i,l_i-1}|} \end{aligned}$$

• This behaviour is observed in experiments

・得下 ・ヨト ・ヨト ・ヨ

Prony systems - local stability

Theorem (DB,YY 2010)

Assume that $\max_{k < C} |\Delta m_k| \le \varepsilon$ for sufficiently small ε . Then there exists a positive constant C_1 depending only on the nodes $\xi_1, \ldots, \xi_{\mathscr{K}}$ and the multiplicities $l_1, \ldots, l_{\mathscr{K}}$ such that for all $i = 1, 2, \ldots, \mathscr{K}$:

$$\begin{aligned} |\Delta a_{ij}| &\leq \begin{cases} C_1 \varepsilon & j = 0\\ C_1 \varepsilon \left(1 + \frac{|a_{i,j-1}|}{|a_{i,l_i-1}|} \right) & 1 \leq j \leq l_i - 1\\ |\Delta \xi_i| &\leq C_1 \varepsilon \frac{1}{|a_{i,l_i-1}|} \end{aligned}$$

- This behaviour is observed in experiments
- Prony method fails to separate the parameters, worst performance

• • = • • = •

Prony systems - local stability

Theorem (DB,YY 2010)

Assume that $\max_{k < C} |\Delta m_k| \le \varepsilon$ for sufficiently small ε . Then there exists a positive constant C_1 depending only on the nodes $\xi_1, \ldots, \xi_{\mathscr{K}}$ and the multiplicities $l_1, \ldots, l_{\mathscr{K}}$ such that for all $i = 1, 2, \ldots, \mathscr{K}$:

$$\begin{aligned} |\Delta a_{ij}| &\leq \begin{cases} C_1 \varepsilon & j = 0\\ C_1 \varepsilon \left(1 + \frac{|a_{i,j-1}|}{|a_{i,l_i-1}|} \right) & 1 \leq j \leq l_i - 1\\ |\Delta \xi_i| &\leq C_1 \varepsilon \frac{1}{|a_{i,l_i-1}|} \end{aligned}$$

- This behaviour is observed in experiments
- Prony method fails to separate the parameters, worst performance
- ESPRIT is better, but still not optimal

D.Batenkov,G.Binyamini,Y.Yomdin (WIS Moments of piecewise functions

ICDEA 2012 9 / 27

Algebraic Fourier inversion

Problem

Reconstruct a **piecewise** C^d function f from n Fourier samples

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \operatorname{e}^{-\imath kt} \mathrm{d}t.$$

• Approximation accuracy $\sim n^{-1}$ - bad!

Algebraic Fourier inversion

Problem

Reconstruct a **piecewise** C^d function f from n Fourier samples

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \operatorname{e}^{-\imath kt} \mathrm{d}t.$$

• Approximation accuracy $\sim n^{-1}$ - bad!

Algebraic approach[Eckhoff(1995)]

• Approximate f by a piecewise polynomial Φ

jumps at $\{\xi_i\}$ with magnitudes $\{a_{i,j}\}$.

 ${\ensuremath{\, \bullet }}$ Recover Φ from the perturbed Prony-type system

$$c_k(f) = \frac{1}{2\pi} \sum_{j=1}^{\mathscr{K}} e^{-\iota k\xi_j} \sum_{l=0}^d \frac{a_{l,j}}{(\iota k)^{l+1}} + O\left(k^{-d-2}\right)$$

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Theorem (DB,YY 2011)

If f is piecewise- C^{d_1} where $d_1 \ge 2d + 1$, then

3

・ 戸 ト ・ ヨ ト ・ ヨ ト

D.Batenkov, G.Binyamini, Y.Yomdin (WIS Moments of piecewise functions

ICDEA 2012 12 / 27

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Piecewise D-finite model

$$\mathfrak{D} = \sum_{j=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{\mathrm{d}^{j}}{\mathrm{d} x^{j}} \quad (a_{ij} \in \mathbb{R})$$

• Every piece satisfies $\mathfrak{D}f_i(x) \equiv 0$, \mathfrak{D} - linear differential operator with polynomial coefficients

$$\mathfrak{D} = \sum_{j=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{\mathrm{d}^{j}}{\mathrm{d} x^{j}} \quad (a_{ij} \in \mathbb{R})$$

• Unknown model parameters:

$$\mathfrak{D} = \sum_{j=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{\mathrm{d}^{j}}{\mathrm{d} x^{j}} \quad (a_{ij} \in \mathbb{R})$$

- Unknown model parameters:
 - Coefficients of \mathfrak{D} , i.e. $\{a_{i,j}\}$,

$$\mathfrak{D} = \sum_{j=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{\mathrm{d}^{j}}{\mathrm{d} x^{j}} \quad (a_{ij} \in \mathbb{R})$$

- Unknown model parameters:
 - Coefficients of \mathfrak{D} , i.e. $\{a_{i,j}\}$,
 - Jump points $\{\xi_i\}$,

$$\mathfrak{D} = \sum_{j=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{\mathrm{d}^{j}}{\mathrm{d} x^{j}} \quad (a_{ij} \in \mathbb{R})$$

- Unknown model parameters:
 - Coefficients of \mathfrak{D} , i.e. $\{a_{i,j}\}$,
 - Jump points $\{\xi_i\}$,
 - Initial values of f at $\{\xi_i\}$.

• Every piece satisfies $\mathfrak{D}f_i(x) \equiv 0$, \mathfrak{D} - linear differential operator with polynomial coefficients

$$\mathfrak{D} = \sum_{j=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{\mathrm{d}^{j}}{\mathrm{d} x^{j}} \quad (a_{ij} \in \mathbb{R})$$

- Unknown model parameters:
 - Coefficients of \mathfrak{D} , i.e. $\{a_{i,j}\}$,
 - Jump points $\{\xi_i\}$,
 - Initial values of f at $\{\xi_i\}$.

• Measurements: algebraic moments $m_k(f) = \int_a^b x^k f(x) dx$.

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

• Idea: integration by parts of the identity $\int_a^b x^k \mathfrak{D} f \equiv 0$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \sum_{i=1}^{\mathcal{H}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

- Idea: integration by parts of the identity $\int_a^b x^k \mathfrak{D} f \equiv 0$.
- $c_{i,j}$ homogeneous bilinear form depending on the values of $\{p_l(x)\}_{l=0}^n$ and the "jump function" $f(x^+) f(x^-)$ with their derivatives up to order n-1 at the point $x = \xi_i$.

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \sum_{i=1}^{\mathcal{H}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

- Idea: integration by parts of the identity $\int_a^b x^k \mathfrak{D} f \equiv 0$.
- $c_{i,j}$ homogeneous bilinear form depending on the values of $\{p_l(x)\}_{l=0}^n$ and the "jump function" $f(x^+) f(x^-)$ with their derivatives up to order n-1 at the point $x = \xi_i$.
- The RHS is annihilated by constant coefficients difference operator

$$\mathscr{E} = \prod_{i=1}^{\mathscr{K}} (\mathbf{E} - \xi_i \mathfrak{I})^n$$

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \sum_{i=1}^{\mathcal{H}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

- Idea: integration by parts of the identity $\int_a^b x^k \mathfrak{D} f \equiv 0$.
- $c_{i,j}$ homogeneous bilinear form depending on the values of $\{p_l(x)\}_{l=0}^n$ and the "jump function" $f(x^+) f(x^-)$ with their derivatives up to order n-1 at the point $x = \xi_i$.
- The RHS is annihilated by constant coefficients difference operator

$$\mathscr{E} = \prod_{i=1}^{\mathscr{K}} (\mathbf{E} - \xi_i \mathfrak{I})^n$$

• Homogeneous recurrence relation for the moments:

$$\mathscr{E}\mathfrak{S}\{m_k\}=0.$$

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

ICDEA 2012 15 / 27

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{m_{k}\} = 0$$

Operator D is known

D.Batenkov,G.Binyamini,Y.Yomdin (WIS Moments of piecewise functions

크

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{m_{k}\} = 0$$

- Operator D is known
 - ▶ solve the confluent Prony system directly (LHS is known) for $\{\xi_j, c_{i,j}\}$ and fully recover the function.

ICDEA 2012 16 / 27

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{m_{k}\} = 0$$

- Operator D is known
 - ▶ solve the confluent Prony system directly (LHS is known) for $\{\xi_j, c_{i,j}\}$ and fully recover the function.
- Operator D unknown

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{m_{k}\} = 0$$

- Operator D is known
 - ▶ solve the confluent Prony system directly (LHS is known) for $\{\xi_j, c_{i,j}\}$ and fully recover the function.
- Operator D unknown
 - ► Solve for coefficients of the difference operator & S.

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{m_{k}\} = 0$$

- Operator D is known
 - ▶ solve the confluent Prony system directly (LHS is known) for $\{\xi_j, c_{i,j}\}$ and fully recover the function.
- \bigcirc Operator \mathfrak{D} unknown
 - ► Solve for coefficients of the difference operator & 𝔅.
 - Factor out the common roots $\{\xi_j\}$ and the remaining factors $\{a_{i,j}\}$.

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{m_{k}\} = 0$$

- 💶 Operator 🎗 is known
 - ▶ solve the confluent Prony system directly (LHS is known) for $\{\xi_j, c_{i,j}\}$ and fully recover the function.
- \bigcirc Operator \mathfrak{D} unknown
 - Solve for coefficients of the difference operator $\mathscr{E}\mathfrak{S}$.
 - Factor out the common roots $\{\xi_j\}$ and the remaining factors $\{a_{i,j}\}$.
 - Finally solve the linear system for $\{c_{i,j}\}$ and fully recover the function.

How many moments are necessary for unique reconstruction?

How many moments are necessary for unique reconstruction?

Definition

Given a particular \mathfrak{D} and number of jump points \mathscr{K} , the **moment uniqueness** index $\tau(\mathfrak{D}, \mathscr{K})$ is the minimal number of moments required for unique reconstruction of any nonzero solution $\mathfrak{D}f \equiv 0$.

How many moments are necessary for unique reconstruction?

Definition

Given a particular \mathfrak{D} and number of jump points \mathscr{K} , the **moment uniqueness** index $\tau(\mathfrak{D}, \mathscr{K})$ is the minimal number of moments required for unique reconstruction of any nonzero solution $\mathfrak{D}f \equiv 0$.

Definition

Given a particular \mathfrak{D} and number of jump points \mathscr{K} , the **moment vanishing index** $\sigma(\mathfrak{D}, \mathscr{K})$ is the maximal number of first zero moments of any nonzero solution $\mathfrak{D}f \equiv 0$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

How many moments are necessary for unique reconstruction?

Definition

Given a particular \mathfrak{D} and number of jump points \mathscr{K} , the **moment uniqueness** index $\tau(\mathfrak{D}, \mathscr{K})$ is the minimal number of moments required for unique reconstruction of any nonzero solution $\mathfrak{D}f \equiv 0$.

Definition

Given a particular \mathfrak{D} and number of jump points \mathscr{K} , the **moment vanishing index** $\sigma(\mathfrak{D}, \mathscr{K})$ is the maximal number of first zero moments of any nonzero solution $\mathfrak{D}f \equiv 0$.

Lemma

$$\tau(\mathfrak{D},\mathscr{K}) \leq \sigma(\mathfrak{D}, 2\mathscr{K}).$$

Legendre differential equation

$$\mathfrak{D}_m = \left(1 - x^2\right) \frac{\mathrm{d}^2}{\mathrm{d}x^2} - 2x \frac{\mathrm{d}}{\mathrm{d}x} + m\left(m + 1\right) \mathfrak{I}.$$

- For $m \in \mathbb{N}$ solutions are the Legendre orthogonal polynomials $\{L_m\}$
- First m-1 moments of L_m are zero
- Conclusion: $\sigma(\mathfrak{D}_m) = m$
- \implies No uniform bound in terms of d, n for generic $\mathfrak{D}!$

Theorem (DB,GB 2012)

Assume that the leading coefficient of the operator \mathfrak{D} does not vanish on any two consecutive jump points ξ_j, ξ_{j+1} . Then

$$\sigma(\mathfrak{D}) \leq (\mathscr{K}+2)n+d-1.$$

Proof outline

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \underbrace{\sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}}_{\varepsilon_{k}}$$

Some initial $\{m_k\}$ vanish \implies sufficient number of initial ε_k vanish.

ICDEA 2012 20 / 27

臣

(I)

Proof outline

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \underbrace{\sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}}_{\varepsilon_{k}}$$

- Some initial $\{m_k\}$ vanish \implies sufficient number of initial ε_k vanish.
- **2** By Skolem-Mahler-Lech, ε_k can have only finitely many zeros $\implies c_{i,j} = 0$.

b) a) The bound

Proof outline

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \underbrace{\sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}}_{\boldsymbol{\varepsilon}_{k}}$$

- Some initial $\{m_k\}$ vanish \implies sufficient number of initial ε_k vanish.
- **2** By Skolem-Mahler-Lech, ε_k can have only finitely many zeros $\implies c_{i,j} = 0$.

$$p_n(\xi_j) \neq 0 \Longrightarrow f(\xi_j) = f'(\xi_j) = \cdots = f^{(n-1)}(\xi_j) = 0.$$

ICDEA 2012 20 / 27

b) a) The bound

Theorem (DB,GB 2012)

Let \mathfrak{D} be of Fuchsian type, and consider moments in [0,1]. If \mathfrak{D} has at most one negative integer characteristic exponent at the point z = 0, then

$$\sigma(\mathfrak{D},0)=2n+d-1.$$

Proof outline

- Write functional equation for the Mellin transform $M[f](s) = \int_0^1 t^s f(s) ds.$
- 2 Check analytic continuation to $\Re s < 0$.

• • = • • = •

Moment generating function

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mu_{k}} = \underbrace{\sum_{i=1}^{\mathcal{H}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}}_{\varepsilon_{k}}}_{\varepsilon_{k}}$$

$$I_{g} (z) = \sum_{k=0}^{\infty} \frac{m_{k}}{z^{k+1}} = \int_{a}^{b} \frac{f(t) dt}{t-z}$$

Theorem

The Cauchy integral I_g satisfies at the neighborhood of ∞ the inhomogeneous ODE

$$\mathfrak{D}I_{g}\left(z\right)=R\left(z\right)$$

where R(z) is the rational function whose Taylor coefficients are given by ε_k .

General Fuchsian operators

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mu_{k} = \mathfrak{S}\{m_{k}\}} = \underbrace{\sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}}_{\varepsilon_{k}}}_{\varepsilon_{k}}$$

Lemma

Let \mathfrak{D} be a Fuchsian operator. Then the characteristic polynomial of \mathfrak{D} at the point ∞ coincides with the leading coefficient of the difference operator \mathfrak{S} .

General Fuchsian operators

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mu_{k} = \mathfrak{S}\{m_{k}\}} = \underbrace{\sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}}_{\varepsilon_{k}}}_{\varepsilon_{k}}$$

Lemma

Let \mathfrak{D} be a Fuchsian operator. Then the characteristic polynomial of \mathfrak{D} at the point ∞ coincides with the leading coefficient of the difference operator \mathfrak{S} .

Theorem

Let \mathfrak{D} be a Fuchsian operator, and let $\lambda(\mathfrak{D})$ denote the largest positive integer root of its characteristic polynomial at the point ∞ . Then

$$\sigma(\mathfrak{D},\mathscr{K}) \leq \max\left\{\lambda\left(\mathfrak{D}\right), (\mathscr{K}+2)n+d-1\right\}.$$

O-finite planar domains

D.Batenkov, G.Binyamini, Y.Yomdin (WIS Moments of piecewise functions

3

• Let $P \subset \mathbb{C}$ be a polygon with vertices z_1, \ldots, z_n

- Let $P \subset \mathbb{C}$ be a polygon with vertices z_1, \ldots, z_n
- Measurements: $\mu_k(f) = \iint z^k f(x, y) \, dx \, dy, \ z = x + \imath y$ where $f = \chi_P$

- Let $P \subset \mathbb{C}$ be a polygon with vertices z_1, \ldots, z_n
- Measurements: $\mu_k(f) = \iint z^k f(x, y) \, dx \, dy, \ z = x + \imath y$ where $f = \chi_P$
- Turns out that there exist $c_1, \ldots, c_n \in \mathbb{C}$ s.t.

$$k(k-1)\mu_{k-2}(\boldsymbol{\chi}_P) = \sum_{i=1}^n c_i z_i^k$$

- Let $P \subset \mathbb{C}$ be a polygon with vertices z_1, \ldots, z_n
- Measurements: $\mu_k(f) = \iint z^k f(x, y) \, dx \, dy, \ z = x + \imath y$ where $f = \chi_P$
- Turns out that there exist $c_1, \ldots, c_n \in \mathbb{C}$ s.t.

$$k(k-1)\mu_{k-2}(\boldsymbol{\chi}_P) = \sum_{i=1}^n c_i z_i^k$$

• Special case of *quadrature domains:* any analytic f (in particular $f(z) = z^k$) satisfies

$$\iint_{\Omega} f(x+iy) \, \mathrm{d}x \, \mathrm{d}y = \sum_{i=1}^{n} \sum_{j=0}^{k_j-1} c_{ij} f^{(j)}(z_i)$$

D.Batenkov, G.Binyamini, Y.Yomdin (WIS Moments of pie

D-finite domains

- Ψ_{β} are piecewise D-finite, are reconstructed via the 1D algorithm.
- $\{\phi_{j,l}\}$ are reconstructed pointwise via solving Prony-type system.

Bibliography

D. Batenkov.

Moment inversion problem for piecewise D-finite functions. Inverse Problems, 25(10):105001, October 2009.

D. Batenkov and Y. Yomdin.

Algebraic Fourier reconstruction of piecewise smooth functions. Mathematics of Computation, 81:277–318, 2012. doi: 10.1090/S0025-5718-2011-02539-1. URL http://dx.doi.org/10.1090/S0025-5718-2011-02539-1.

UNE http://dx.doi.org/10.1090/30025-5/18-2011-02

D. Batenkov, V. Golubyatnikov, and Y. Yomdin.

Reconstruction of Planar Domains from Partial Integral Measurements. In Proc. Complex Analysis & Dynamical Systems V, 2011.

K.S. Eckhoff.

Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Mathematics of Computation, 64(210):671–690, 1995.

B. Gustafsson, C. He, P. Milanfar, and M. Putinar. Reconstructing planar domains from their moments. *Inverse Problems*, 16(4):1053–1070, 2000.