P-recursive moment sequences of piecewise D-finite functions and Prony-type algebraic systems

Dmitry Batenkov Gal Binyamini Yosef Yomdin

Weizmann Institute of Science. Israel

18th International Conference on Difference Equations and **Applications** July 23-27, 2012, Barcelona

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Linear recurrences with constant coefficients

Definition

The sequence $\{m_k\}_{k=0}^{\infty} \in \mathbb{C}^{\omega}$ is \mathbb{C} -recurrent if $\exists A_0, \dots, A_d \in \mathbb{C}$ such that $\forall k \in \mathbb{N}$:

$$A_0m_k + A_1m_{k+1} + \cdots + A_dm_{k+d} = 0.$$

Linear recurrences with constant coefficients

Prony-type systems

Definition

The sequence $\{m_k\}_{k=0}^{\infty} \in \mathbb{C}^{\omega}$ is \mathbb{C} -recurrent if $\exists A_0, \dots, A_d \in \mathbb{C}$ such that $\forall k \in \mathbb{N}$:

$$A_0 m_k + A_1 m_{k+1} + \dots + A_d m_{k+d} = 0.$$

General form of solution

Exponential polynomials (Binet's formula)

$$m_k = \sum_{i=1}^{\mathcal{K}} P_i(k) \, \xi_i^k$$

where $\{\xi_i\}$ are the roots of the characteristic polynomial $A_0 + A_1 x + \cdots + A_d x^d$.

D.Batenkov, G.Binyamini, Y.Yomdin (WIS Moments of piecewise functions

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Prony system

$$m_k = \sum_{i=1}^{\mathcal{K}} P_i(k) \, \xi_i^k$$

Reconstruction problem

Given few initial terms m_0, \ldots, m_N , reconstruct $\{\xi_i, P_i\}$.

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Prony system

$$m_k = \sum_{i=1}^{\mathcal{K}} P_i(k) \, \xi_i^k$$

Reconstruction problem

Given few initial terms m_0, \ldots, m_N , reconstruct $\{\xi_i, P_i\}$.

Examples

• Padé approximation: $\{m_k\}$ are Taylor coefficients of a rational function with poles at $\{\xi_i^{-1}\}$

<ロト <個ト < ≣ト < ≣ト = り < ©

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Prony system

$$m_k = \sum_{i=1}^{\mathcal{K}} P_i(k) \, \xi_i^k$$

Reconstruction problem

Given few initial terms m_0, \ldots, m_N , reconstruct $\{\xi_i, P_i\}$.

Examples

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

- Padé approximation: $\{m_k\}$ are Taylor coefficients of a rational function with poles at $\left\{ \xi_{i}^{-1}
 ight\}$
- High resolution methods in Signal Processing

Example: finite rate of innovation

• Problem: recovering a signal which has been sampled below Nyquist rate

Moments of piecewise functions

D.Batenkov, G.Binyamini, Y.Yomdin (WIS Moments of piecewise functions

Example: finite rate of innovation

- Problem: recovering a signal which has been sampled below Nyquist rate
- Assumption: the signal is finite-parametric. For example:

$$x(t) = \sum_{j=0}^{\mathcal{K}} a_j \delta(t - \xi_j)$$

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Example: finite rate of innovation

- Problem: recovering a signal which has been sampled below Nyquist rate
- Assumption: the signal is finite-parametric. For example:

$$x(t) = \sum_{j=0}^{\mathcal{K}} a_j \delta(t - \xi_j)$$

• Method: choose a sampling kernel h(t) with certain algebraic properties s.t.

$$y_n = \langle h(t-n), x(t) \rangle = \sum_{j=0}^{\mathcal{K}} a_j e^{-i\xi_j n}$$

Moments of piecewise functions

Example: finite rate of innovation

- Problem: recovering a signal which has been sampled below Nyquist rate
- Assumption: the signal is finite-parametric. For example:

$$x(t) = \sum_{j=0}^{\mathcal{K}} a_j \delta(t - \xi_j)$$

• Method: choose a sampling kernel h(t) with certain algebraic properties s.t.

$$y_n = \langle h(t-n), x(t) \rangle = \sum_{j=0}^{\mathcal{K}} a_j e^{-i\xi_j n}$$

Generalized to piecewise polynomials

Prony solution method

$$m_k = \sum_{i=1}^{\mathcal{K}} P_i(k) \, \xi_i^k; \qquad \sum_{i=1}^{\mathcal{K}} \deg P_i = C$$

Prony solution method

$$m_k = \sum_{i=1}^{\mathcal{K}} P_i(k) \, \xi_i^k; \qquad \sum_{i=1}^{\mathcal{K}} \deg P_i = C$$

Solve Hankel-type system

$$\begin{bmatrix} m_0 & m_1 & \cdots & m_{C-1} \\ m_1 & m_2 & \cdots & m_C \\ \vdots & \vdots & \vdots & \vdots \\ m_{C-1} & m_{d+1} & \cdots & m_{2C-1} \end{bmatrix} \times \begin{bmatrix} A_0 \\ A_1 \\ \vdots \\ A_{C-1} \end{bmatrix} = - \begin{bmatrix} m_C \\ m_{C+1} \\ \vdots \\ m_{2C} \end{bmatrix}$$

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

《□》《圖》《意》《意》。意:

Prony solution method

$$m_k = \sum_{i=1}^{\mathcal{K}} P_i(k) \, \xi_i^k; \qquad \sum_{i=1}^{\mathcal{K}} \deg P_i = C$$

Solve Hankel-type system

$$\underbrace{ \begin{bmatrix} m_0 & m_1 & \cdots & m_{C-1} \\ m_1 & m_2 & \cdots & m_C \\ \vdots & \vdots & \vdots & \vdots \\ m_{C-1} & m_{d+1} & \cdots & m_{2C-1} \end{bmatrix}}_{\stackrel{\text{def}}{=}M} \times \begin{bmatrix} A_0 \\ A_1 \\ \vdots \\ A_{C-1} \end{bmatrix} = - \begin{bmatrix} m_C \\ m_{C+1} \\ \vdots \\ m_{2C} \end{bmatrix}$$

 $\{\xi_i\}$ are the roots of $x^d + A_{d-1}x^{d-1} + \cdots + A_1x + A_0 = 0$.

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Prony solution method

$$m_k = \sum_{i=1}^{\mathcal{K}} P_i(k) \, \xi_i^k; \qquad \sum_{i=1}^{\mathcal{K}} \deg P_i = C$$

Solve Hankel-type system

$$\begin{bmatrix} m_0 & m_1 & \cdots & m_{C-1} \\ m_1 & m_2 & \cdots & m_C \\ \vdots & \vdots & \vdots & \vdots \\ m_{C-1} & m_{d+1} & \cdots & m_{2C-1} \end{bmatrix} \times \begin{bmatrix} A_0 \\ A_1 \\ \vdots \\ A_{C-1} \end{bmatrix} = - \begin{bmatrix} m_C \\ m_{C+1} \\ \vdots \\ m_{2C} \end{bmatrix}$$

- $\{\xi_i\}$ are the roots of $x^d + A_{d-1}x^{d-1} + \cdots + A_1x + A_0 = 0$.
- **3** Coefficients of $\{P_i\}$ are found by solving a Vandermonde-type linear system.

Subspace methods

Observations

- $M = V^T B V$, with V-confluent Vandermonde.
- The range of M and V are the same.
- V has the rotational invariance property:

$$V^{\uparrow} = V_{\downarrow} J$$

where J is the block Jordan matrix with eigenvalues $\{\xi_i\}$.

Subspace methods

Observations

- $M = V^T B V$, with V-confluent Vandermonde.
- The range of M and V are the same.
- V has the rotational invariance property:

$$V^{\uparrow} = V_{\downarrow} J$$

where J is the block Jordan matrix with eigenvalues $\{\xi_i\}$.

ESPRIT method

- Compute the SVD $M = W\Sigma V^T$.
- **2** Calculate $\Phi = W_{\perp}^{\#}W^{\uparrow}$.
- **3** Set $\{\xi_i\}$ to be the eigenvalues of Φ with appropriate multiplicities.

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

ICDEA 2012

Prony systems - solvability

$$m_k = \sum_{j=1}^{\mathcal{K}} \sum_{i=0}^{l_j-1} a_{i,j} \underbrace{k(k-1)\cdots(k-i+1)}_{\stackrel{\text{def}}{=}(k)_i} \xi_j^{k-i}; \quad \sum_{j=1}^{\mathcal{K}} l_j = C; \ k = 0, 1, \dots, 2C-1$$

Theorem

The Prony system has a solution if and only if the sequence (m_0, \ldots, m_{2C-1}) is \mathbb{C} -recurrent of length at most C.

(ロ) (団) (団) (国) (国) (国)

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Prony systems - solvability

$$m_k = \sum_{j=1}^{\mathcal{K}} \sum_{i=0}^{l_j-1} a_{i,j} \underbrace{k(k-1)\cdots(k-i+1)}_{\substack{\text{def}\\ \equiv (k)_i}} \xi_j^{k-i}; \quad \sum_{j=1}^{\mathcal{K}} l_j = C; \ k = 0, 1, \dots, 2C-1$$

Theorem

The Prony system has a solution if and only if the sequence (m_0, \ldots, m_{2C-1}) is \mathbb{C} -recurrent of length at most C.

Theorem

The parameters $\{a_{i,i}, \xi_i\}$ can be **uniquely** recovered from the first 2C measurements if and only if 1) $\xi_i \neq \xi_j$ for $i \neq j$, and 2) $a_{li-1,j} \neq 0$ for all $j = 1, ..., \mathcal{K}$.

Prony systems - local stability

Theorem (DB, YY 2010)

Assume that $\max_{k < C} |\Delta m_k| \le \varepsilon$ for sufficiently small ε .

Then there exists a positive constant C_1 depending only on the nodes $\xi_1, \ldots, \xi_{\mathscr{K}}$ and the multiplicities $l_1, \ldots, l_{\mathscr{K}}$ such that for all $i = 1, 2, ..., \mathcal{K}$:

$$|\Delta a_{ij}| \le egin{cases} C_1 arepsilon & j = 0 \ C_1 arepsilon igg(1 + rac{|a_{i,j-1}|}{|a_{i,l_i-1}|} igg) & 1 \le j \le l_i - 1 \ |\Delta \xi_i| \le C_1 arepsilon rac{1}{|a_{i,l_i-1}|} \end{cases}$$

This behaviour is observed in experiments

Prony systems - local stability

Theorem (DB, YY 2010)

Assume that $\max_{k < C} |\Delta m_k| < \varepsilon$ for sufficiently small ε .

Then there exists a positive constant C_1 depending only on the nodes $\xi_1,\ldots,\xi_{\mathscr K}$ and the multiplicities $l_1,\ldots,l_{\mathscr K}$ such that for all $i = 1, 2, \ldots, \mathcal{K}$:

$$|\Delta a_{ij}| \leq egin{cases} C_1 arepsilon & j = 0 \ C_1 arepsilon igg(1 + rac{|a_{i,j-1}|}{|a_{i,l_i-1}|} igg) & 1 \leq j \leq l_i - 1 \ |\Delta \xi_i| \leq C_1 arepsilon rac{1}{|a_{i,l_i-1}|} \end{cases}$$

- This behaviour is observed in experiments
- Prony method fails to separate the parameters, worst performance

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Prony systems - local stability

Theorem (DB, YY 2010)

Assume that $\max_{k < C} |\Delta m_k| < \varepsilon$ for sufficiently small ε .

Then there exists a positive constant C_1 depending only on the nodes $\xi_1, \ldots, \xi_{\mathscr{K}}$ and the multiplicities $l_1, \ldots, l_{\mathscr{K}}$ such that for all $i = 1, 2, ..., \mathcal{K}$:

$$|\Delta a_{ij}| \le egin{cases} C_1 arepsilon & j = 0 \ C_1 arepsilon igg(1 + rac{|a_{i,j-1}|}{|a_{i,l_i-1}|} igg) & 1 \le j \le l_i - 1 \ |\Delta \xi_i| \le C_1 arepsilon rac{1}{|a_{i,l_i-1}|} \end{cases}$$

- This behaviour is observed in experiments
- Prony method fails to separate the parameters, worst performance
- ESPRIT is better, but still not optimal

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

ICDEA 2012

Algebraic Fourier inversion

Problem

Reconstruct a **piecewise** C^d function f from n Fourier samples

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt.$$

• Approximation accuracy $\sim n^{-1}$ - bad!

Algebraic Fourier inversion

Problem

Reconstruct a **piecewise** C^d function f from n Fourier samples

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt.$$

• Approximation accuracy $\sim n^{-1}$ - bad!

Algebraic approach[Eckhoff(1995)]

- Approximate f by a piecewise polynomial Φ
 - jumps at $\{\xi_i\}$ with magnitudes $\{a_{i,i}\}$.
- \bullet Recover Φ from the perturbed Prony-type system

$$c_k(f) = \frac{1}{2\pi} \sum_{i=1}^{\mathcal{K}} e^{-ik\xi_j} \sum_{l=0}^{d} \frac{a_{l,j}}{(ik)^{l+1}} + O\left(k^{-d-2}\right)$$

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

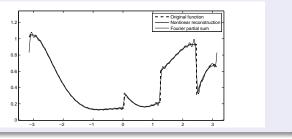
10 / 27

Algebraic Fourier inversion

Theorem (DB,YY 2011)

If f is piecewise- C^{d_1} where $d_1 > 2d + 1$, then

$$\left|\Delta \xi_{j}\right| \sim n^{-d-2}$$
 $\left|\Delta a_{l,j}\right| \sim n^{-d-1}$
 $\left|\Delta f\right| \sim n^{-d-1}$.



Piecewise D-finite reconstruction

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

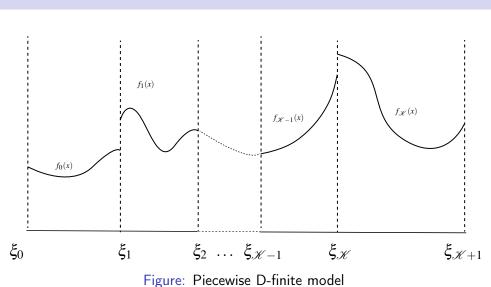
Moments of piecewise functions

《□》《圖》《意》《意》。意:

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Piecewise D-finite model



Moments of piecewise functions

Piecewise D-finite reconstruction

• Every piece satisfies $\mathfrak{D}f_i(x) \equiv 0$, \mathfrak{D} - linear differential operator with polynomial coefficients

$$\mathfrak{D} = \sum_{j=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{\mathrm{d}^{j}}{\mathrm{d} x^{j}} \quad (a_{ij} \in \mathbb{R})$$

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Piecewise D-finite reconstruction

• Every piece satisfies $\mathfrak{D}f_i(x) \equiv 0$, \mathfrak{D} - linear differential operator with polynomial coefficients

$$\mathfrak{D} = \sum_{j=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{d^{j}}{d x^{j}} \quad (a_{ij} \in \mathbb{R})$$

• Unknown model parameters:

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Piecewise D-finite reconstruction

• Every piece satisfies $\mathfrak{D}f_i(x) \equiv 0$, \mathfrak{D} - linear differential operator with polynomial coefficients

$$\mathfrak{D} = \sum_{i=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{\mathrm{d}^{j}}{\mathrm{d} x^{j}} \quad (a_{ij} \in \mathbb{R})$$

- Unknown model parameters:
 - ▶ Coefficients of \mathfrak{D} , i.e. $\{a_{i,i}\}$,
 - ▶ Jump points $\{\xi_i\}$,

Piecewise D-finite reconstruction

• Every piece satisfies $\mathfrak{D}f_i(x) \equiv 0$, \mathfrak{D} - linear differential operator with polynomial coefficients

$$\mathfrak{D} = \sum_{j=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{d^{j}}{d x^{j}} \quad (a_{ij} \in \mathbb{R})$$

- Unknown model parameters:
 - ▶ Coefficients of \mathfrak{D} , i.e. $\{a_{i,j}\}$,

Piecewise D-finite reconstruction

• Every piece satisfies $\mathfrak{D}f_i(x) \equiv 0$, \mathfrak{D} - linear differential operator with polynomial coefficients

$$\mathfrak{D} = \sum_{j=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{d^{j}}{d x^{j}} \quad (a_{ij} \in \mathbb{R})$$

- Unknown model parameters:
 - ▶ Coefficients of \mathfrak{D} , i.e. $\{a_{i,i}\}$,
 - ▶ Jump points $\{\xi_i\}$,
 - ▶ Initial values of f at $\{\xi_i\}$.

D.Batenkov, G.Binyamini, Y.Yomdin (WIS Moments of piecewise functions

Piecewise D-finite reconstruction

• Every piece satisfies $\mathfrak{D}f_i(x) \equiv 0$, \mathfrak{D} - linear differential operator with polynomial coefficients

$$\mathfrak{D} = \sum_{i=0}^{n} \left(\sum_{i=0}^{d} a_{i,j} x^{i} \right) \frac{\mathrm{d}^{j}}{\mathrm{d} x^{j}} \quad (a_{ij} \in \mathbb{R})$$

- Unknown model parameters:
 - ▶ Coefficients of \mathfrak{D} , i.e. $\{a_{i,i}\}$,
 - ▶ Jump points $\{\xi_i\}$,
 - ▶ Initial values of f at $\{\xi_i\}$.
- Measurements: algebraic moments $m_k(f) = \int_a^b x^k f(x) dx$.

▲圖 ▶ ▲ 重 ▶ ▲ 重 ▶ ■ 重

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Recurrence relation

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

- Idea: integration by parts of the identity $\int_a^b x^k \mathfrak{D} f \equiv 0$.
- \bullet $c_{i,i}$ homogeneous bilinear form depending on the values of $\{p_l(x)\}_{l=0}^n$ and the "jump function" $f(x^+) - f(x^-)$ with their derivatives up to order n-1 at the point $x=\xi_i$.

Recurrence relation

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \sum_{i=1}^{\mathcal{X}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \, \xi_{i}^{k-j}$$

• Idea: integration by parts of the identity $\int_a^b x^k \mathfrak{D} f \equiv 0$.

Recurrence relation

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

- Idea: integration by parts of the identity $\int_a^b x^k \mathfrak{D} f \equiv 0$.
- \bullet $c_{i,i}$ homogeneous bilinear form depending on the values of $\{p_l(x)\}_{l=0}^n$ and the "jump function" $f(x^+) - f(x^-)$ with their derivatives up to order n-1 at the point $x=\xi_i$.
- The RHS is annihilated by constant coefficients difference operator

$$\mathscr{E} = \prod_{i=1}^{\mathscr{K}} (\mathbf{E} - \xi_i \mathfrak{I})^n$$

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

D.Batenkov, G.Binyamini, Y.Yomdin (WIS Moments of piecewise functions

Recurrence relation

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \sum_{i=1}^{\mathcal{X}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

- Idea: integration by parts of the identity $\int_a^b x^k \mathfrak{D} f \equiv 0$.
- ullet $c_{i,i}$ homogeneous bilinear form depending on the values of $\{p_l(x)\}_{l=0}^n$ and the "jump function" $f(x^+) - f(x^-)$ with their derivatives up to order n-1 at the point $x = \xi_i$.
- The RHS is annihilated by constant coefficients difference operator

$$\mathscr{E} = \prod_{i=1}^{\mathscr{K}} (\mathbf{E} - \xi_i \mathfrak{I})^n$$

• Homogeneous recurrence relation for the moments:

$$\mathscr{E}\mathfrak{S}\{m_k\}=0.$$

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Reconstruction procedure

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{ m_{k} \} = 0$$

Operator D is known

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Reconstruction procedure

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{ m_{k} \} = 0$$

- Operator D is known
 - solve the confluent Prony system directly (LHS is known) for $\{\xi_i, c_{i,i}\}$ and fully recover the function.

Reconstruction procedure

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{ m_{k} \} = 0$$

- Operator D is known
 - solve the confluent Prony system directly (LHS is known) for $\{\xi_i, c_{i,i}\}$ and fully recover the function.
- Operator D unknown

Reconstruction procedure

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{ m_{k} \} = 0$$

- Operator D is known
 - solve the confluent Prony system directly (LHS is known) for $\{\xi_i, c_{i,i}\}$ and fully recover the function.
- Operator D unknown
 - ► Solve for coefficients of the difference operator & S.

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Reconstruction procedure

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{ m_{k} \} = 0$$

- Operator D is known
 - solve the confluent Prony system directly (LHS is known) for $\{\xi_i, c_{i,i}\}$ and fully recover the function.
- Operator D unknown
 - ► Solve for coefficients of the difference operator & S.
 - Factor out the common roots $\{\xi_i\}$ and the remaining factors $\{a_{i,j}\}.$

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Reconstruction procedure

$$\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k} = \sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}$$

$$\mathscr{E} \mathfrak{S} \{ m_{k} \} = 0$$

- Operator D is known
 - solve the confluent Prony system directly (LHS is known) for $\{\xi_i, c_{i,i}\}$ and fully recover the function.
- Operator D unknown
 - ▶ Solve for coefficients of the difference operator & S.
 - Factor out the common roots $\{\xi_i\}$ and the remaining factors
 - Finally solve the linear system for $\{c_{i,j}\}$ and fully recover the function.

Moment uniqueness and vanishing

How many moments are necessary for unique reconstruction?

Moment uniqueness and vanishing

How many moments are necessary for unique reconstruction?

Definition

Given a particular $\mathfrak D$ and number of jump points $\mathscr K$, the **moment uniqueness** index $\tau(\mathfrak D,\mathscr K)$ is the minimal number of moments required for unique reconstruction of any nonzero solution $\mathfrak D f\equiv 0$.

Moment uniqueness and vanishing

How many moments are necessary for unique reconstruction?

Definition

Given a particular $\mathfrak D$ and number of jump points $\mathscr K$, the **moment uniqueness** index $\tau(\mathfrak D,\mathscr K)$ is the minimal number of moments required for unique reconstruction of any nonzero solution $\mathfrak Df\equiv 0$.

Definition

Given a particular $\mathfrak D$ and number of jump points $\mathscr K$, the **moment vanishing** index $\sigma(\mathfrak D,\mathscr K)$ is the maximal number of first zero moments of any nonzero solution $\mathfrak Df\equiv 0$.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q で

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

ICDEA 2012

《□》《圖》《意》《意》。意:

17 / 27

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

ICDEA 2012

17 / 2

Moment uniqueness and vanishing

How many moments are necessary for unique reconstruction?

Definition

Given a particular $\mathfrak D$ and number of jump points $\mathscr K$, the **moment uniqueness** index $\tau(\mathfrak D,\mathscr K)$ is the minimal number of moments required for unique reconstruction of any nonzero solution $\mathfrak Df\equiv 0$.

Definition

Given a particular $\mathfrak D$ and number of jump points $\mathscr K$, the **moment vanishing** index $\sigma(\mathfrak D,\mathscr K)$ is the maximal number of first zero moments of any nonzero solution $\mathfrak Df\equiv 0$.

Lemma

 $\tau(\mathfrak{D}, \mathscr{K}) \leq \sigma(\mathfrak{D}, 2\mathscr{K}).$

Unbouded example

Legendre differential equation

$$\mathfrak{D}_{m} = \left(1 - x^{2}\right) \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} - 2x \frac{\mathrm{d}}{\mathrm{d}x} + m(m+1)\mathfrak{I}.$$

- ullet For $m\in\mathbb{N}$ solutions are the Legendre orthogonal polynomials $\{L_m\}$
- First m-1 moments of L_m are zero
- Conclusion: $\sigma(\mathfrak{D}_m) = m$
- \Longrightarrow No uniform bound in terms of d,n for generic $\mathfrak{D}!$

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

18 / 27

Regular operators

Theorem (DB,GB 2012)

Assume that the leading coefficient of the operator $\mathfrak D$ does not vanish on any two consecutive jump points ξ_i, ξ_{i+1} . Then

$$\sigma(\mathfrak{D}) \leq (\mathcal{K} + 2) n + d - 1.$$

《□》《圖》《意》《意》。意:

Moments of piecewise functions

19 / 27

Moments of piecewise functions

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ◆ ○ ○ ○

Proof outline

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \underbrace{\sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}}_{\varepsilon_{k}}$$

- **1** Some initial $\{m_k\}$ vanish \Longrightarrow sufficient number of initial ε_k vanish.
- 2 By Skolem-Mahler-Lech, ε_k can have only finitely many $zeros \Longrightarrow c_{i,i} = 0.$

Proof outline

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \underbrace{\sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}}_{\varepsilon_{k}}$$

• Some initial $\{m_k\}$ vanish \Longrightarrow sufficient number of initial ε_k vanish.

Proof outline

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mathfrak{S}\{m_{k}\}} = \underbrace{\sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}}_{\varepsilon_{k}}$$

- lacktriangledown Some initial $\{m_k\}$ vanish \Longrightarrow sufficient number of initial $m{arepsilon}_k$ vanish.
- 2 By Skolem-Mahler-Lech, ε_k can have only finitely many $zeros \Longrightarrow c_{i,i} = 0.$
- **3** $p_n(\xi_i) \neq 0 \Longrightarrow f(\xi_i) = f'(\xi_i) = \cdots = f^{(n-1)}(\xi_i) = 0.$

Resonant Fuchsian operators

Theorem (DB,GB 2012)

Let $\mathfrak D$ be of Fuchsian type, and consider moments in [0,1]. If $\mathfrak D$ has at most one negative integer characteristic exponent at the point z=0, then

$$\sigma(\mathfrak{D},0)=2n+d-1.$$

Proof outline

- Write functional equation for the Mellin transform $M[f](s) = \int_0^1 t^s f(s) ds$.
- 2 Check analytic continuation to $\Re s < 0$.

4 D > 4 B > 4 B > B 9 9 9

D.Batenkov,G.Binyamini,Y.Yomdin (WIS

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

ICDEA 201

2

21 / 2

Moment generating function

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mu_{k}} = \underbrace{\sum_{i=1}^{\mathcal{X}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}}_{\varepsilon_{k}}$$

$$I_g(z) = \sum_{k=0}^{\infty} \frac{m_k}{z^{k+1}} = \int_a^b \frac{f(t) dt}{t - z}$$

Theorem

The Cauchy integral I_g satisfies at the neighborhood of ∞ the inhomogeneous ODE

$$\mathfrak{D}I_{g}\left(z\right) =R\left(z\right)$$

where R(z) is the rational function whose Taylor coefficients are given by ε_k .

D.Batenkov,G.Binyamini,Y.Yomdin (WIS

Moments of piecewise functions

ICDEA 2012

22 / 27

General Fuchsian operators

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mu_{k} = \mathfrak{S}\{m_{k}\}} = \underbrace{\sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \xi_{i}^{k-j}}_{\varepsilon_{k}}$$

Lemma

Let $\mathfrak D$ be a Fuchsian operator. Then the characteristic polynomial of $\mathfrak D$ at the point ∞ coincides with the leading coefficient of the difference operator $\mathfrak S$.

General Fuchsian operators

$$\underbrace{\sum_{j=0}^{n} \sum_{i=0}^{d} a_{i,j} (-1)^{j} (i+k)_{j} m_{i-j+k}}_{\mu_{k} = \mathfrak{S}\{m_{k}\}} = \underbrace{\sum_{i=1}^{\mathcal{K}} \sum_{j=0}^{n-1} c_{i,j} (k)_{j} \, \xi_{i}^{k-j}}_{\varepsilon_{k}}$$

Lemma

Let $\mathfrak D$ be a Fuchsian operator. Then the characteristic polynomial of $\mathfrak D$ at the point ∞ coincides with the leading coefficient of the difference operator $\mathfrak S$.

Theorem

Let $\mathfrak D$ be a Fuchsian operator, and let $\lambda\left(\mathfrak D\right)$ denote the largest positive integer root of its characteristic polynomial at the point ∞ . Then

$$\sigma(\mathfrak{D}, \mathcal{K}) \leq \max \left\{ \lambda(\mathfrak{D}), (\mathcal{K} + 2) n + d - 1 \right\}.$$

(回) (目) (目) (目) (2)

Moments of piecewise functions

ICDEA 20

23 / 27

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise funct

ICDEA 2012

23 / 27

D-finite planar domains

2D shapes from complex moments ([Gustafsson et al.(2000)Gustafsson, He, Milanfar, a

• Let $P \subset \mathbb{C}$ be a polygon with vertices z_1, \ldots, z_n

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise function

2D shapes from complex moments ([Gustafsson et al.(2000)Gustafsson, He, Milanfar, a

- Let $P \subset \mathbb{C}$ be a polygon with vertices z_1, \ldots, z_n
- Measurements: $\mu_k(f) = \iint z^k f(x, y) dx dy$, z = x + iy where $f = \chi_P$

2D shapes from complex moments ([Gustafsson et al.(2000)Gustafsson, He, Milanfar, a

- Let $P \subset \mathbb{C}$ be a polygon with vertices z_1, \ldots, z_n
- Measurements: $\mu_k(f) = \iint z^k f(x,y) dx dy$, z = x + iy where
- Turns out that there exist $c_1, \ldots, c_n \in \mathbb{C}$ s.t.

$$k(k-1)\mu_{k-2}(\chi_P) = \sum_{i=1}^n c_i z_i^k$$

D.Batenkov, G.Binyamini, Y. Yomdin (WIS

2D shapes from complex moments ([Gustafsson et al.(2000)Gustafsson, He, Milanfar, a

- Let $P \subset \mathbb{C}$ be a polygon with vertices z_1, \ldots, z_n
- Measurements: $\mu_k(f) = \int \int z^k f(x, y) dx dy$, z = x + iy where $f = \chi_P$
- Turns out that there exist $c_1, \ldots, c_n \in \mathbb{C}$ s.t.

$$k(k-1)\mu_{k-2}(\chi_P) = \sum_{i=1}^n c_i z_i^k$$

 \bullet Special case of *quadrature domains*: any analytic f (in particular $f(z) = z^k$) satisfies

$$\iint_{\Omega} f(x+iy) \, dx \, dy = \sum_{i=1}^{n} \sum_{j=0}^{k_j-1} c_{ij} f^{(j)}(z_i)$$

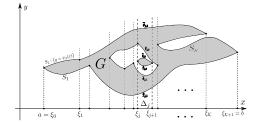
D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

ICDEA 2012

25 / 27

D-finite domains



$$m_{\alpha,\beta} = \int_{a}^{b} x^{\alpha} \Psi_{\beta}(x) = \sum_{j=0}^{\mathcal{K}} \int_{\Delta_{j}} x^{\alpha} \Psi_{\beta,j}(x) dx$$

$$\Psi_{\beta,j} = \frac{1}{\beta+1} \sum_{l=1}^{s_j} \left\{ \overline{\phi}_{j,l}^{\beta+1} \left(x \right) - \underline{\phi}_{j,l}^{\beta+1} \left(x \right) \right\}$$

- ullet Ψ_{eta} are piecewise D-finite, are reconstructed via the 1D algorithm.
- $\{\phi_{i,l}\}$ are reconstructed pointwise via solving Prony-type system.

D.Batenkov, G.Binyamini, Y.Yomdin (WIS

Moments of piecewise functions

Bibliography

D. Batenkov.

Moment inversion problem for piecewise D-finite functions. Inverse Problems, 25(10):105001, October 2009.

D. Batenkov and Y. Yomdin.

Algebraic Fourier reconstruction of piecewise smooth functions.

Mathematics of Computation, 81:277-318, 2012.

doi: 10.1090/S0025-5718-2011-02539-1.

URL http://dx.doi.org/10.1090/S0025-5718-2011-02539-1.

D. Batenkov, V. Golubyatnikov, and Y. Yomdin

Reconstruction of Planar Domains from Partial Integral Measurements. In Proc. Complex Analysis & Dynamical Systems V, 2011.

Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Mathematics of Computation, 64(210):671-690, 1995.

B. Gustafsson, C. He, P. Milanfar, and M. Putinar

Reconstructing planar domains from their moments. Inverse Problems, 16(4):1053-1070, 2000.