Iterated Function Systems on the circle

Pablo G. Barrientos and Artem Raibekas

Univerzidad de Oviedo (Spain) Univerzidade Federal Fluminenze (Brazil)

IDEA: 27 July 2012

A semigroup with identity generated (w.r.t. the composition) by a family of diffeomorphisms $\Phi = \{\phi_1, \ldots, \phi_k\}$ on S^1 ,

 $\mathsf{IFS}(\Phi) \stackrel{\text{def}}{=} \{h: S^1 \to S^1: \ h = \phi_{i_n} \circ \cdots \circ \phi_{i_1}, \ i_j \in \{1, \dots, k\}\} \cup \{\mathsf{id}\}$

is called iterated function system or shortly IFS.

A semigroup with identity generated (w.r.t. the composition) by a family of diffeomorphisms $\Phi = \{\phi_1, \ldots, \phi_k\}$ on S^1 , $\mathsf{IFS}(\Phi) \stackrel{\text{def}}{=} \{h: S^1 \to S^1: h = \phi_{i_n} \circ \cdots \circ \phi_{i_1}, i_j \in \{1, \dots, k\}\} \cup \{\mathsf{id}\}$ is called iterated function system or shortly IFS. For each $x \in S^1$, we define the orbit of x for IFS(Φ) as $\operatorname{Orb}_{\Phi}(x) \stackrel{\text{def}}{=} \{ \overline{h(x): h \in \mathsf{IFS}(\Phi)} \} \subset S^1$ and the set of periodic points of $IFS(\Phi)$ as $\operatorname{Per}(\operatorname{IFS}(\Phi)) \stackrel{\text{def}}{=} \{x \in S^1 : h(x) = x \text{ for some } h \in \operatorname{IFS}(\Phi), h \neq \operatorname{id}\}.$

Let $\Lambda \subset S^1$. We say that Λ is

- invariant for IFS(Φ) if $Orb_{\Phi}(x) \subset \Lambda$ for all $x \in \Lambda$,
- minimal for $IFS(\Phi)$ if

 $\Lambda \subset \overline{\mathrm{Orb}_{\Phi}(x)}$ for all $x \in \Lambda$.

Let $\Lambda \subset S^1$. We say that Λ is

- invariant for IFS(Φ) if $Orb_{\Phi}(x) \subset \Lambda$ for all $x \in \Lambda$,

- minimal for $IFS(\Phi)$ if

$\Lambda \subset \overline{\mathrm{Orb}_{\Phi}(x)}$ for all $x \in \Lambda$.

In order to define robust properties under perturbations we introduce the following concept of proximity into the set of IFSs. We say that

 $\mathsf{IFS}(\psi_1,\ldots,\psi_k)$ is C^r -close to $\mathsf{IFS}(\phi_1,\ldots,\phi_k)$

if ψ_i is C^r-close to ϕ_i for all $i = 1, \ldots, k$.

Let $\Lambda \subset S^1$. We say that Λ is

- invariant for IFS(Φ) if $Orb_{\Phi}(x) \subset \Lambda$ for all $x \in \Lambda$,

- minimal for $IFS(\Phi)$ if

 $\Lambda \subset \overline{\mathrm{Orb}_{\Phi}(x)}$ for all $x \in \Lambda$.

In order to define robust properties under perturbations we introduce the following concept of proximity into the set of IFSs. We say that

 $\mathsf{IFS}(\psi_1,\ldots,\psi_k)$ is C^r -close to $\mathsf{IFS}(\phi_1,\ldots,\phi_k)$

if ψ_i is C^r-close to ϕ_i for all $i = 1, \dots, k$. So, we will say that

 S^1 is <u>C^r-robust minimal</u> for IFS(Φ)

if S^1 is minimal for all IFS(Ψ) C^r-close enough to IFS(Φ).

Taking into account the rotation number of a homeomorphism $f:S^1\to S^1$ we have three possibilities:

- f has a periodic orbit,
- all the orbits (for forward iterates) of f are dense,
- there is a wandering interval for f.

The wandering intervals are the gaps of a unique f-invariant minimal Cantor set $\Lambda \subset S^1$.

Taking into account the rotation number of a homeomorphism $f:S^1\to S^1$ we have three possibilities:

- IFS(f) has a finite orbit,
- all the orbits (for forward iterates) of f are dense,
- there is a wandering interval for f.

The wandering intervals are the gaps of a unique f-invariant minimal Cantor set $\Lambda \subset S^1$.

Taking into account the rotation number of a homeomorphism $f:S^1\to S^1$ we have three possibilities:

- IFS(f) has a finite orbit,
- S^1 is minimal for IFS(f),
- there is a wandering interval for f.

The wandering intervals are the gaps of a unique f-invariant minimal Cantor set $\Lambda \subset S^1$.

Taking into account the rotation number of a homeomorphism $f: S^1 \rightarrow S^1$ we have three possibilities:

- IFS(f) has a finite orbit,
- S^1 is minimal for IFS(f),
- there exists an invariant minimal Cantor set for IFS(f). In this case it is unique.

Taking into account the rotation number of a homeomorphism $f: S^1 \rightarrow S^1$ we have three possibilities:

- IFS(f) has a finite orbit,
- S^1 is minimal for IFS(f),
- there exists an invariant minimal Cantor set for IFS(f). In this case it is unique.

This trichotomy can be extended to actions of groups of homeomorphisms on the circle:

<u>THEOREM (GHYS)</u>: Let $G(\Phi)$ be a subgroup of $Hom(S^1)$. Then one (and only one) possibility occurs:

- $G(\Phi)$ has a finite orbit,
- S^1 is minimal for $G(\Phi)$,

- there exists an invariant minimal Cantor set for $G(\Phi)$. In this case it is unique. <u>THEOREM (DenJoy)</u>: There exists $\varepsilon > 0$ such that if $f \in \text{Diff}^2(S^1)$ is ε -close to the identity in the C^2 -topology then there are no invariant minimal Cantor sets for IFS(f).

Moreover, the following conditions are equivalent:

- 1. S^1 is minimal for IFS(f),
- 2. there are no periodic points for f.

<u>THEOREM</u> (**DenJoy**): There exists $\varepsilon > 0$ such that if $f \in \text{Diff}^2(S^1)$ is ε -close to the identity in the C^2 -topology then there are no invariant minimal Cantor sets for IFS(f).

Moreover, the following conditions are equivalent:

- 1. S^1 is minimal for IFS(f),
- 2. there are no periodic points for f.

<u>THEOREM (Generalized Duminy)</u>: There exists $\varepsilon > 0$ such that if $f_0, f_1 \in \text{Diff}^2(S^1)$ are Morse-Smale ε -close to the identity in the C²-topology then there are no invariant minimal Cantor sets for all $G(\Psi)$ C¹-close to $G(f_0, f_1)$.

Moreover, the following conditions are equivalenta:

- 1. S^1 is C^1 -robust minimal for $G(f_0, f_1)$,
- 2. $f_1(\operatorname{Per}(f_0)) \neq \operatorname{Per}(f_0)$.

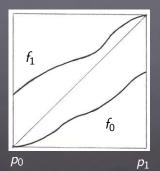
^aCondition (2) is satisfied if f_0 and f_1 have not periodic points in common

ss-intervals for $IFS(\Phi)$

<u>DEFINITION</u>: Given $\Phi = \{f_0, f_1\} \subset \text{Diff}_+^1(\mathbb{R})$, an interval $[p_0, p_1] \subset \mathbb{R}$ is called <u>ss-interval</u> for IFS(Φ) if:

- $[p_0, p_1] = f_0([p_0, p_1]) \cup f_1([p_0, p_1]),$
- $(p_0, p_1) \cap \operatorname{Fix}(f_i) \neq \emptyset$ for i = 1, 2, and $p_j \notin \operatorname{Fix}(f_i)$ for $i \neq j$,

- p_0 and p_1 are attracting fixed points of f_0 and f_1 resp. We will denote by K_{Φ}^{ss} a ss-interval $[p_0, p_1]$ for IFS(Φ).



improved Duminy's Lemma

<u>THEOREM</u>: Let K_{Φ}^{ss} be a ss-interval for IFS(Φ) with $\Phi = \{f_0, f_1\} \subset \operatorname{Diff}_+^2(\mathbb{R})$ such that $f_i|_{K_{\Phi}^{ss}}$ has hyperbolic fixed points. Then, there exists $\varepsilon \ge 0.16$ such that if $f_0|_{K_{\Phi}^{ss}}$, $f_1|_{K_{\Phi}^{ss}}$ are ε -close to the identity in the C^2 -topology, it holds $K_{\Psi}^{ss} \subset \overline{\operatorname{Per}(\operatorname{IFS}(\Psi))}$ and $K_{\Psi}^{ss} = \overline{\operatorname{Orb}_{\Psi}(x)}$ for all $x \in K_{\Psi}^{ss}$, for every IFS(Ψ) C^1 -close to IFS(Φ).

<u>THEOREM</u>: Consider IFS(Φ) with $\Phi = \{\phi_1, \dots, \phi_k\} \subset \text{Hom}(S^1)$. Then exists a non-empty closed set $\Lambda \subset S^1$ such that $\Lambda = \phi_1(\Lambda) \cup \dots \cup \phi_k(\Lambda) = \overline{\text{Orb}_{\Phi}(x)}$ for all $x \in \Lambda$. One (and only one) of the following possibilities occurs: 1. Λ is a finite orbit, 2. Λ has non-empty interior, 3. Λ is a Cantor set. <u>THEOREM</u>: Consider IFS(Φ) with $\Phi = \{\phi_1, \dots, \phi_k\} \subset \text{Hom}(S^1)$. Then exists a non-empty closed set $\Lambda \subset S^1$ such that $\Lambda = \phi_1(\Lambda) \cup \dots \cup \phi_k(\Lambda) = \overline{\text{Orb}_{\Phi}(x)}$ for all $x \in \Lambda$. One (and only one) of the following possibilities occurs: 1. Λ is a finite orbit, 2. Λ has non-empty interior, 3. Λ is a Cantor set.

Denjoy's Theorem for IFS

<u>THEOREM</u>: There exists $\varepsilon > 0$ s.t. if $f_0, f_1 \in \text{Diff}^2(S^1)$ are Morse-Smale diff. ε -close to the identity in the C^2 -topology with no periodic point in common then, there are no invariant minimal Cantor sets for all IFS(Ψ) C^1 -close to IFS(f_0, f_1).

Moreover, denoting by n_i the period of f_i , it is equivalent:

- 1. S^1 is C^1 -robust minimal for IFS $(f_0^{n_0}, f_1^{n_1})$,
- 2. there are no ss-intervals for $IFS(f_0^{n_0}, f_1^{n_1})$.

Let $x \in S^1$. The ω -limit of x for IFS(Φ) is the set $\omega_{\Phi}(x) \stackrel{\text{def}}{=} \{y \in S^1 : \exists (h_n)_n \subset \text{IFS}(\Phi) \setminus \{\text{id}\} \text{ s.t. } \lim_{n \to \infty} h_n \circ \cdots \circ h_1(x) = y\},$ while the ω -limit of IFS(Φ) is

 $\omega(\mathsf{IFS}(\Phi)) \stackrel{\text{\tiny def}}{=} \mathrm{cl}\big(\{y \in S^1: \ \exists \, x \in S^1 \ \mathsf{s.t.} \ y \in \omega_\Phi(x)\}\big),$

where "cl" denotes the closure of a set. Similarly we define the α -limit of IFS(Φ). Finally, the <u>limit set</u> of IFS(Φ) $L(IFS(\Phi)) = \omega(IFS(\Phi)) \cup \alpha(IFS(\Phi)).$ Let $x \in S^1$. The ω -limit of x for IFS(Φ) is the set $\omega_{\Phi}(x) \stackrel{\text{def}}{=} \{y \in S^1 : \exists (h_n)_n \subset \text{IFS}(\Phi) \setminus \{\text{id}\} \text{ s.t. } \lim_{n \to \infty} h_n \circ \cdots \circ h_1(x) = y\},$ while the ω -limit of IFS(Φ) is

 $\omega(\mathsf{IFS}(\Phi)) \stackrel{\text{\tiny def}}{=} \operatorname{cl}(\{y \in S^1 : \exists x \in S^1 \text{ s.t. } y \in \omega_{\Phi}(x)\}),$

where "cl" denotes the closure of a set. Similarly we define the α -limit of IFS(ϕ). Finally, the limit set of IFS(ϕ)

 $L(\mathsf{IFS}(\Phi)) = \omega(\mathsf{IFS}(\Phi)) \cup \alpha(\mathsf{IFS}(\Phi)).$

Let $\Lambda \subset S^1$. We say that Λ is

- transitive for IFS(Φ) if there exists a dense orbit in Λ ,
- isolated for IFS(Φ) if $\Lambda \cap \operatorname{Per}(\operatorname{IFS}(\Phi)) \neq \emptyset$ and there exists an open set D such that

 $\Lambda \subset D$ and $\overline{\operatorname{Per}(\operatorname{IFS}(\Phi)) \cap D} \subset \Lambda$.

spectral decomposition for IFS

<u>THEOREM</u>: There exists $\varepsilon > 0$ such that if $f_0, f_1 \in \text{Diff}^2(S^1)$ are Morse-Smale diffeomorphisms of periods n_0 and n_1 , respectively, ε -close to the identity in the C^2 -topology and with no periodic point in common, then there are finitely many isolated, transitive pairwise disjoint intervals K_1, \ldots, K_m for IFS $(f_0^{n_0}, f_1^{n_1})$ such that

 $L(\mathsf{IFS}(f_0^{n_0}, f_1^{n_1})) = \bigcup_{i=1}^m K_i.$

Moreover, this decomposition is C^1 -robust.

Thanks for your attention