Iterated Function Systems on the circle

Pablo G. Barrientos and Artem Raibekas

Univerzidad de Oviedo (Spain) Univerzidade federal Fluminenze (Brazil)

IDEA: 27 July 2012

A semigroup with identity generated (w.r.t. the composition) by a family of diffeomorphisms $\Phi=\{\phi_1,\ldots,\phi_k\}$ on $S^1,$

$$\mathsf{IFS}(\Phi) \stackrel{\text{def}}{=} \{h: S^1 \to S^1 \colon \ h = \phi_{i_n} \circ \dots \circ \phi_{i_1}, \ \ i_j \in \{1, \dots, k\}\} \cup \{\mathrm{id}\}$$

is called iterated function system or shortly IFS.

A semigroup with identity generated (w.r.t. the composition) by a family of diffeomorphisms $\Phi=\{\phi_1,\ldots,\phi_k\}$ on $S^1,$

$$\mathsf{IFS}(\Phi) \stackrel{\text{def}}{=} \{h: S^1 \to S^1 \colon \ h = \phi_{i_n} \circ \dots \circ \phi_{i_1}, \ \ i_j \in \{1, \dots, k\}\} \cup \{\mathrm{id}\}$$

is called iterated function system or shortly IFS.

For each $x \in S^1$, we define the <u>orbit of x</u> for IFS (Φ) as

$$\operatorname{Orb}_{\Phi}(x) \stackrel{\text{def}}{=} \{h(x) \colon h \in \mathsf{IFS}(\Phi)\} \subset S^1$$

and the set of periodic points of IFS(Φ) as

 $\operatorname{Per}(\mathsf{IFS}(\Phi)) \stackrel{ ext{def}}{=} \{x \in S^1 \colon \ h(x) = x \ \mathsf{for} \ \mathsf{some} \ h \in \operatorname{IFS}(\Phi), \ h
eq \operatorname{id} \}.$

Let $\Lambda \subset S^1$. We say that Λ is

- invariant for IFS(Φ) if $Orb_{\Phi}(x) \subset \Lambda$ for all $x \in \Lambda$,
- minimal for $IFS(\Phi)$ if

 $\Lambda \subset \overline{\mathrm{Orb}_{\Phi}(x)}$ for all $x \in \Lambda$.

Let $\Lambda \subset S^1$. We say that Λ is

- invariant for IFS(Φ) if $Orb_{\Phi}(x) \subset \Lambda$ for all $x \in \Lambda$,
- minimal for $IFS(\Phi)$ if

$$\Lambda \subset \overline{\mathrm{Orb}_{\Phi}(x)}$$
 for All $x \in \Lambda$.

In order to define robust properties under perturbations we introduce the following concept of proximity into the set of IFSs. We say that

$$\mathsf{IFS}(\psi_1,\ldots,\psi_k)$$
 is C^r -close to $\mathsf{IFS}(\phi_1,\ldots,\phi_k)$

if ψ_i is C^r -close to ϕ_i for all $i=1,\ldots,k$.

Let $\Lambda \subset S^1$. We say that Λ is

- invariant for IFS(Φ) if $Orb_{\Phi}(x) \subset \Lambda$ for all $x \in \Lambda$,
- minimal for $IFS(\Phi)$ if

$$\Lambda \subset \overline{\mathrm{Orb}_{\Phi}(x)}$$
 for all $x \in \Lambda$.

In order to define robust properties under perturbations we introduce the following concept of proximity into the set of IFSs. We say that

$$\mathsf{IFS}(\psi_1,\ldots,\psi_k)$$
 is C^r -close to $\mathsf{IFS}(\phi_1,\ldots,\phi_k)$

if ψ_i is C^r -close to ϕ_i for all $i=1,\ldots,k$. So, we will say that

 S^1 is <u>Cr-robust minimal</u> for IFS(Φ)

if S^1 is minimal for all IFS(Ψ) C^r -close enough to IFS(Φ).

Taking into account the rotation number of a homeomorphism $f:S^1\to S^1$ we have three possibilities:

- f has a periodic orbit,
- all the orbits (for forward iterates) of f are dense,
- there is a wandering interval for f.

The wandering intervals are the gaps of a unique f-invariant minimal Cantor set $\Lambda \subset S^1.$

Taking into account the rotation number of a homeomorphism $f:S^1 o S^1$ we have three possibilities:

- IFS(f) has a finite orbit,
- all the orbits (for forward iterates) of f are deuse,
- there is a wandering interval for f.

The wandering intervals are the gaps of a unique f-invariant minimal Cautor set $\Lambda \subset S^1$.

Taking into account the rotation number of a homeomorphism $f:S^1\to S^1$ we have three possibilities:

- IFS(f) has a finite orbit,
- S^1 is minimal for IFS(f),
- there is a wandering interval for f.

The wandering intervals are the gaps of a unique f-invariant minimal Cautor set $\Lambda \subset S^1$.

Taking into account the rotation number of a homeomorphism $f:S^1\to S^1$ we have three possibilities:

- IFS(f) has a finite orbit,
- S^1 is minimal for IFS(f),
- there exists an invariant minimal Cantor set for IFS(f). In this case it is unique.

Taking into account the rotation number of a homeomorphism $f:S^1\to S^1$ we have three possibilities:

- IFS(f) has a finite orbit,
- S^1 is minimal for IFS(f),
- there exists an invariant minimal Cantor set for IFS(f). In this case it is unique.

This trichotomy can be extended to actions of groups of homeomorphisms on the circle:

THEOREM (ChYS): Let $G(\Phi)$ be a subgroup of $Hom(S^1)$. Then one (and only one) possibility occurs:

- $G(\Phi)$ has a finite orbit,
- S^1 is minimal for $G(\Phi)$,
- there exists an invariant minimal Cantor set for $\mathrm{G}(\Phi)$. In this case it is unique.

THEOREM (Denjoy): There exists $\varepsilon > 0$ such that if $f \in \mathrm{Diff}^2(S^1)$ is ε -close to the identity in the C^2 -topology then there are no invariant minimal Cantor sets for IFS(f).

Moreover, the following conditions are equivalent:

- 1. S^1 is minimal for IFS(f),
- 2. there are no periodic points for f.

THEOREM (DenJOY): There exists $\varepsilon > 0$ such that if $f \in \mathrm{Diff}^2(S^1)$ is ε -close to the identity in the C^2 -topology then there are no invariant minimal Cantor sets for IFS(f).

Moreover, the following conditions are equivalent:

- 1. S^1 is minimal for IFS(f),
- 2. there are no periodic points for f.

THEOREM (Generalized Duminy): There exists $\varepsilon>0$ such that if $f_0,f_1\in {\rm Diff}^2(S^1)$ are Morse-Smale ε -close to the identity in the C^2 -topology then there are no invariant minimal Cantor sets for all ${\rm G}(\Psi)$ C^1 -close to ${\rm G}(f_0,f_1)$.

Moreover, the following conditions are equivalenta:

- 1. S^1 is C^1 -robust minimal for $G(f_0, f_1)$,
- 2. $f_1(\text{Per}(f_0)) \neq \text{Per}(f_0)$.

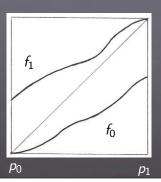
 a Condition (2) is satisfied if f_{0} and f_{1} have not periodic points in common.

ss-intervals for $IFS(\Phi)$

 $\frac{\mathsf{DEFINITION}}{[p_0,p_1]\subset\mathbb{R}}\text{ is called }\underbrace{\mathsf{ss-interval}}_{\mathsf{for}}\mathsf{FS}(\Phi)\;\mathsf{if}$

- $\overline{-[p_0,p_1]}=f_0([p_0,p_1])\cup f_1([p_0,p_1]),$
- p_0 and p_1 are attracting fixed points of f_0 and f_1 resp.

We will denote by K_{Φ}^{ss} a ss-interval $[p_0, p_1]$ for IFS (Φ) .



improved Duminy, I Lemma

THEOREM: Let K_{Φ}^{ss} be a ss-interval for IFS(Φ) with $\Phi = \{f_0, f_1\} \subset \mathrm{Diff}_+^2(\mathbb{R})$ such that $f_i|_{K_{\Phi}^{ss}}$ has hyperbolic fixed points. Then, there exists $\varepsilon \geq 0.16$ such that if $f_0|_{K_{\Phi}^{ss}}$, $f_1|_{K_{\Phi}^{ss}}$ are ε -close to the identity in the C^2 -topology, it holds

 $\mathcal{K}^{ss}_{\Psi} \subset \overline{\operatorname{Per}(\operatorname{IFS}(\Psi))}$ and $\mathcal{K}^{ss}_{\Psi} = \overline{\operatorname{Orb}_{\Psi}(x)}$ for all $x \in \mathcal{K}^{ss}_{\Psi}$,

for every IFS(Ψ) C^1 -close to IFS(Φ).

<u>THEOREM</u>: Consider IFS(Φ) with $\Phi = \{\phi_1, \dots, \phi_k\} \subset \operatorname{Hom}(S^1)$. Then exists a non-empty closed set $\Lambda \subset S^1$ such that

$$\Lambda = \phi_1(\Lambda) \cup \cdots \cup \phi_k(\Lambda) = \overline{\operatorname{Orb}_{\Phi}(x)}$$
 for all $x \in \Lambda$.

One (and only one) of the following possibilities occurs:

- 1. Λ is a finite orbit,
- 2. A has non-empty interior,
- 3. A is a Cantor set.

<u>THEOREM</u>: Consider IFS(Φ) with $\Phi = \{\phi_1, \dots, \phi_k\} \subset \operatorname{Hom}(S^1)$. Then exists a non-empty closed set $\Lambda \subset S^1$ such that

$$\Lambda = \phi_1(\Lambda) \cup \cdots \cup \phi_k(\Lambda) = \overline{\operatorname{Orb}_{\Phi}(x)}$$
 for all $x \in \Lambda$.

One (and only one) of the following possibilities occurs:

- 1. Λ is a finite orbit.
- 2. A has non-empty interior,
- 3. A is a Cantor set.

Denjoy's Theorem for 175

<u>THEOREM</u>: There exists $\varepsilon > 0$ s.t. if $f_0, f_1 \in \mathrm{Diff}^2(S^1)$ are Morse-Smale diff. ε -close to the identity in the C^2 -topology with no periodic point in common then, there are no invariant minimal Cantor sets for all IFS(Ψ) C^1 -close to IFS(f_0, f_1).

Moreover, denoting by n_i the period of f_i , it is equivalent:

- 1. S^1 is C^1 -robust minimal for IFS $(f_0^{n_0}, f_1^{n_1})$,
- 2. there are no ss-intervals for IFS $(f_0^{n_0}, f_1^{n_1})$

Let $x \in S^1$. The ω -limit of x for IFS(Φ) is the set

$$\omega_\Phi(x) \stackrel{ ext{def}}{=} \{y \in S^1: \, \exists \, (h_n)_n \subset \mathsf{IFS}(\Phi) ackslash \{\mathrm{id}\} \, \, ext{ s.t. } \, \lim_{n o \infty} h_n \circ \cdots \circ h_1(x) = y\},$$

while the ω -limit of IFS(Φ) is

$$\omega(\mathsf{IFS}(\Phi)) \stackrel{\text{def}}{=} \mathrm{cl}(\{y \in S^1: \exists x \in S^1 \text{ s.t. } y \in \omega_{\Phi}(x)\}),$$

where "c1" denotes the closure of a set. Similarly we define the α -limit of IFS(Φ). Finally, the <u>limit set</u> of IFS(Φ)

$$L(\mathsf{IFS}(\Phi)) = \omega(\mathsf{IFS}(\Phi)) \cup \alpha(\mathsf{IFS}(\Phi)).$$

Let $x \in S^1$. The ω -limit of x for IFS (Φ) is the set

$$\omega_\Phi(x)\stackrel{ ext{def}}{=} \{y\in S^1:\, \exists\, (h_n)_n\subset \mathsf{IFS}(\Phi)ackslash\{\mathrm{id}\} \,\, ext{ s.t. } \lim_{n o\infty}h_n\circ\cdots\circ h_1(x)=y\},$$

while the ω -limit of IFS(Φ) is

$$\omega(\mathsf{IFS}(\Phi)) \stackrel{\text{def}}{=} \operatorname{cl}(\{y \in S^1: \exists x \in S^1 \text{ s.t. } y \in \omega_{\Phi}(x)\}),$$

where "cl" denotes the closure of a set. Similarly we define the α -limit of IFS(Φ). Finally, the <u>limit set</u> of IFS(Φ)

$$L(\mathsf{IFS}(\Phi)) = \omega(\mathsf{IFS}(\Phi)) \cup \alpha(\mathsf{IFS}(\Phi)).$$

Let $\Lambda \subset S^1$. We say that Λ is

- transitive for IFS(Φ) if there exists a deuse orbit in Λ ,
- isolated for IFS(Φ) if $\Lambda \cap \operatorname{Per}(\operatorname{IFS}(\Phi)) \neq \emptyset$ and there exists an open set D such that

$$\Lambda \subset D$$
 and $\overline{\operatorname{Per}(\mathsf{IFS}(\Phi)) \cap D} \subset \Lambda$.

spectral decomposition for 175

<u>THEOREM</u>: There exists $\varepsilon>0$ such that if $f_0,f_1\in \mathrm{Diff}^2(S^1)$ are Morse-Smale diffeomorphisms of periods n_0 and n_1 , respectively, ε -close to the identity in the C^2 -topology and with no periodic point in common, then there are finitely many isolated, transitive pairwise disjoint intervals K_1,\ldots,K_m for $\mathrm{IFS}(f_0^{n_0},f_1^{n_1})$ such that

$$L(\mathsf{IFS}(f_0^{n_0}, f_1^{n_1})) = \bigcup_{i=1}^m K_i.$$

Moreover, this decomposition is C^1 -robust.

