Geometric methods for global stability in the Ricker competition model

E. Cabral Balreira

ICDEA 2012 Applications of Difference Equations to Biology *Collaborators: Saber Elaydi and Rafael Luís

Program:

• Global analysis of discrete dynamical systems

Program:

• Global analysis of discrete dynamical systems

Geometry of Critical sets

Program:

• Global analysis of discrete dynamical systems

Geometry of Critical sets

 Application to Discrete Planar Systems, in particular Ricker Competition Model

$$(x_{n+1}, y_{n+1}) = F(x_n, y_n), n \in \mathbb{Z}^+$$

$$(x_{n+1}, y_{n+1}) = F(x_n, y_n), n \in \mathbb{Z}^+$$

- Fixed points:
 - one extinction fixed point (0,0)

$$(x_{n+1}, y_{n+1}) = F(x_n, y_n), n \in \mathbb{Z}^+$$

- Fixed points:
 - one extinction fixed point (0,0)
 - two exclusion fixed points on the axes (K, 0), and (0, L)

$$(x_{n+1}, y_{n+1}) = F(x_n, y_n), n \in \mathbb{Z}^+$$

- Fixed points:
 - one extinction fixed point (0,0)
 - two exclusion fixed points on the axes (K, 0), and (0, L)
 - A possible coexistence fixed point (x^*, y^*) (positive).

Let *U* be an open region in \mathbb{R}^2 and $F: U \to \mathbb{R}^2$ a smooth map.

We denote J(p) as the **determinant of the Jacobian** of *F* at *p*.

Let U be an open region in \mathbb{R}^2 and $F: U \to \mathbb{R}^2$ a smooth map.

We denote J(p) as the **determinant of the Jacobian** of *F* at *p*.

Definition

We say *F* is **good** at $p \in U$ if either $J(p) \neq 0$ or $\nabla J(p) \neq 0$ and *F* is **good**, if it is good at every point.

Let U be an open region in \mathbb{R}^2 and $F: U \to \mathbb{R}^2$ a smooth map.

We denote J(p) as the **determinant of the Jacobian** of *F* at *p*.

Definition

We say *F* is **good** at $p \in U$ if either $J(p) \neq 0$ or $\nabla J(p) \neq 0$ and *F* is **good**, if it is good at every point.

Definition

We denote LC_{-1} to be the set of **singular points**, that is, the set of points where J(p) vanishes.

• If $p \in LC_{-1}$, then p is singular.

- If $p \in LC_{-1}$, then p is singular.
- If $p \notin LC_{-1}$, then p is **regular**.

- If $p \in LC_{-1}$, then p is singular.
- If $p \notin LC_{-1}$, then p is **regular**.

Lemma

The singular points of a good map form smooth curves, called the **critical curve**, denoted by LC_{-1} .

- If $p \in LC_{-1}$, then p is singular.
- If $p \notin LC_{-1}$, then p is **regular**.

Lemma

The singular points of a good map form smooth curves, called the **critical curve**, denoted by LC_{-1} .

Proof: Application of the Implicit Function Theorem.

Topological Singularity

Let φ be a parametrization of LC_{-1} through p, so that $\varphi(0) = p$.

Topological Singularity

Let φ be a parametrization of LC_{-1} through p, so that $\varphi(0) = p$.

• *p* is a **fold point** if:

$$\frac{d}{dt}\left(F\circ\varphi\right)\left(0\right)\neq0.$$

Let φ be a parametrization of LC_{-1} through p, so that $\varphi(0) = p$.

• *p* is a **fold point** if:

$$\frac{d}{dt}\left(F\circ\varphi\right)\left(0\right)\neq0.$$

• *p* is a **cusp point** if:

$$\frac{d}{dt}(F\circ\varphi)(0)=0 \text{ and } \frac{d^2}{dt^2}(F\circ\varphi)(0)\neq 0.$$

Let φ be a parametrization of LC_{-1} through p, so that $\varphi(0) = p$.

• *p* is a **fold point** if:

$$\frac{d}{dt}\left(F\circ\varphi\right)\left(0\right)\neq0.$$

• p is a cusp point if:

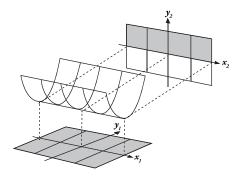
$$\frac{d}{dt}\left(F\circ\varphi\right)\left(0\right)=0 \text{ and } \frac{d^{2}}{dt^{2}}\left(F\circ\varphi\right)\left(0\right)\neq0.$$

Definition

A point p is an **excellent** point of a good map F if it is a regular, a fold, or a cusp point. We say F is an **excellent** map, if it is excellent at every point.

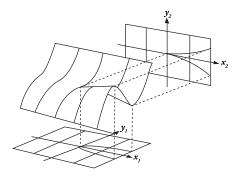
Theorem (Whitney, 1955)

Let $F : U \to \mathbb{R}^2$ be a smooth map. If $p \in U$ is a **fold** point, then there are smooth coordinates (x_1, y_1) and (x_2, y_2) around p and F(p) such that F takes the form $x_2 = x_1$ and $y_2 = y_1^2$.



Theorem (Whitney, 1955)

Let $F : U \to \mathbb{R}^2$ be a smooth map. If $p \in U$ is a **cusp** point, then there are smooth coordinates (x_1, y_1) and (x_2, y_2) around p and F(p) such that F takes the form $x_2 = x_1$ and $y_2 = y_1^3 - x_1y_1$.



Definition

Let $U \subseteq \mathbb{R}^2$ be a compact region, $p \in U$, and $v \in S^1$ (the unit circle). We say that p is **exposed in the direction of** v if there exists $\varepsilon > 0$ such that $p + tv \in U$ for $t \in (0, \varepsilon)$.

Definition

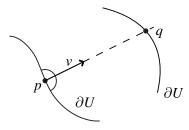
Let $U \subseteq \mathbb{R}^2$ be a compact region, $p \in U$, and $v \in S^1$ (the unit circle). We say that p is **exposed in the direction of** v if there exists $\varepsilon > 0$ such that $p + tv \in U$ for $t \in (0, \varepsilon)$.

• For all $p \in int(U)$, p is exposed in every direction.

Definition

Let $U \subseteq \mathbb{R}^2$ be a compact region, $p \in U$, and $v \in S^1$ (the unit circle). We say that p is **exposed in the direction of** v if there exists $\varepsilon > 0$ such that $p + tv \in U$ for $t \in (0, \varepsilon)$.

- For all $p \in int(U)$, p is exposed in every direction.
- If $p \in \partial U$ and exposed in direction v, $\exists t > 0$ s.t., $p + tv \in \partial U$.



• Critical curve of the RCM:

$$LC_{-1} = \left\{ (x, y) \in \mathbb{R}^2_+ : y = \frac{1 - x}{1 - (1 - ab)x}, x \neq \frac{1}{1 - ab} \right\}.$$
(1)

Oritical curve of the RCM:

$$LC_{-1} = \left\{ (x, y) \in \mathbb{R}^2_+ : y = \frac{1 - x}{1 - (1 - ab)x}, x \neq \frac{1}{1 - ab} \right\}.$$
(1)

• LC_{-1} has two connected components: LC_{-1}^1 and LC_{-1}^2 .

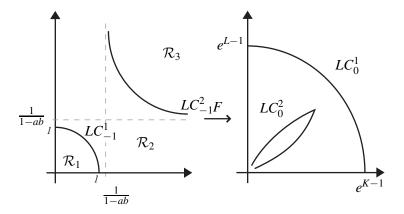


Figure : The subdivision of the Domain of the Ricker competition map by the critical curves LC_{-1}^1 and LC_{-1}^2 and their respective images LC_0^1 and LC_0^2 showing the typical geometry.

Proposition

Let F be the Ricker map. The following are true.

(i) The *x*-axis and *y*-axis are invariant sets.

(ii)
$$\lim_{\|p\|\to\infty} F(p) = (0,0).$$

Proposition

Let F be the Ricker map. The following are true.

(ii)
$$\lim_{\|p\| \to \infty} F(p) = (0,0).$$

In particular, *F* has a continuous extension to the one-point compactification and $F(\mathbb{R}^2_+)$ is **compact**.

Proposition

Let F be the Ricker map.

$$\partial F(\mathbb{R}^2_+) \subseteq F(\partial \mathbb{R}^2_+) \cup LC_0$$

Proposition

Let F be the Ricker map.

$$\partial F(\mathbb{R}^2_+) \subseteq F(\partial \mathbb{R}^2_+) \cup LC_0$$

- This follows because the image of regular points cannot be on the boundary.
- Any new boundary points, must be images of critical points.

Theorem

The Ricker map is excellent.

Theorem

The Ricker map is excellent.

• Proof is a mixture of Geometry and Analysis.

Theorem

The Ricker map is excellent.

- Proof is a mixture of Geometry and Analysis.
- Parametrization of LC_{-1}^1 as $\varphi_1: [0,1] \to \mathbb{R}^2$ a curve from (0,1) to (1,0) by:

$$\varphi_1(t) = \left(t, \frac{1-t}{1-t+abt}\right)$$

Theorem

The Ricker map is excellent.

- Proof is a mixture of Geometry and Analysis.
- Parametrization of LC_{-1}^1 as $\varphi_1: [0,1] \to \mathbb{R}^2$ a curve from (0,1) to (1,0) by:

$$\varphi_1(t) = \left(t, \frac{1-t}{1-t+abt}\right)$$

• Let $(F \circ \varphi_1)(t) = (\alpha_1(t), \alpha_2(t)) = \alpha(t)$, we must show that

Theorem

The Ricker map is excellent.

- Proof is a mixture of Geometry and Analysis.
- Parametrization of LC_{-1}^1 as $\varphi_1 : [0,1] \to \mathbb{R}^2$ a curve from (0,1) to (1,0) by:

$$\varphi_1(t) = \left(t, \frac{1-t}{1-t+abt}\right)$$

• Let $(F \circ \varphi_1)(t) = (\alpha_1(t), \alpha_2(t)) = \alpha(t)$, we must show that $\alpha'_1(t)$ and $\alpha'_2(t)$ do not vanish for $t \in [0, 1]$.

Critical points in LC_{-1}^1

Direct Computation:

$$\alpha'(t) = (\alpha'_1(t), \alpha'_2(t)) = (\rho_1(t)h(t), \rho_2(t)h(t)),$$

Direct Computation:

$$\alpha'(t) = \left(\alpha'_1(t), \alpha'_2(t)\right) = \left(\rho_1(t)h(t), \rho_2(t)h(t)\right),$$

where $\rho_1(t) \neq 0$, $\rho_2(t) \neq 0$ for $t \in [0, 1]$ and

$$h(t) = (ab - 1)^{2} t^{3} + (-3 - a^{2}b^{2} + 4ab) t^{2} + (-2ab + 3 - a^{2}b) t - 1$$

h(0),h(1)<0

Direct Computation:

$$\alpha'(t) = \left(\alpha'_1(t), \alpha'_2(t)\right) = \left(\rho_1(t)h(t), \rho_2(t)h(t)\right),$$

where $\rho_1(t) \neq 0$, $\rho_2(t) \neq 0$ for $t \in [0, 1]$ and

$$h(t) = (ab - 1)^{2} t^{3} + (-3 - a^{2}b^{2} + 4ab) t^{2} + (-2ab + 3 - a^{2}b) t - 1$$

h(0), h(1) < 0

Goal: Show that $h(t) \neq 0$

Critical points in LC_{-1}^1 : Some Geometric Considerations

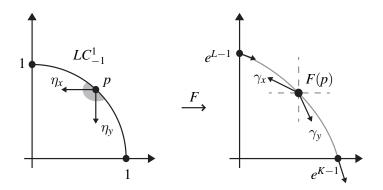


Figure : General directios of rays parallel to axes.

Lemma

The cubic polynomial h(t) does not vanish on the interval [0, 1]

Suppose it has a root $t_0 \in (0, 1)$

Lemma

The cubic polynomial h(t) does not vanish on the interval [0, 1]

Suppose it has a root $t_0 \in (0, 1)$

(1) t_0 has multiplicity 1.

Look at the behavior of $\alpha(t_0) = q_0$.

Critical points in LC_{-1}^1



Figure : Possible local behaviors of the curve α at q_0 .

Critical points in LC_{-1}^1

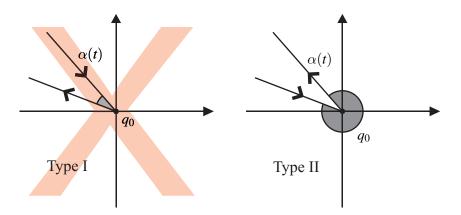
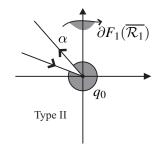


Figure : Only Type II allows for possible locations of γ_x and γ_y .

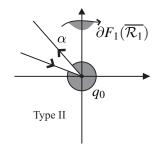
Critical points in LC_{-1}^1 : Behavior of α is Type II

• q_0 is exposed $\rightarrow h(t)$ has another root t_1 .



Critical points in LC_{-1}^1 : Behavior of α is Type II

• q_0 is exposed $\rightarrow h(t)$ has another root t_1 .



• Suppose t_1 has multiplicity one.

Look at the behavior of $\alpha(t_1) = q_1$.

Critical points in LC_{-1}^1

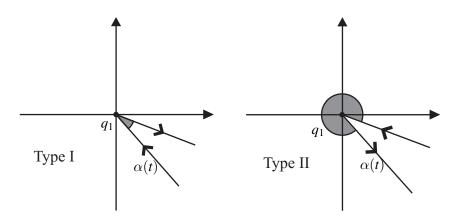


Figure : Possible local behaviors of the curve α at q_1 .

Critical points in LC_{-1}^1

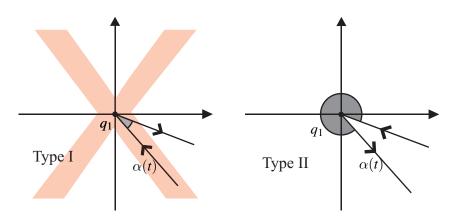
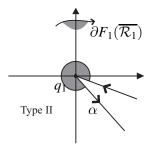
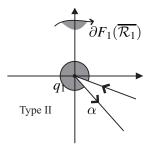


Figure : Only Type II allows for possible locations of γ_x and γ_y .

• q_1 is exposed $\rightarrow h(t)$ must change sign at least twice. Contradiction.



• q_1 is exposed $\rightarrow h(t)$ must change sign at least twice. Contradiction.



 If t₁ has multiplicity two, h(t) would have to change sign at least two more times, contradiction. (2) t_0 has multiplicity 2.

Algebraic proof: Root of h'(t) cannot be a root of h(t).

(2) t_0 has multiplicity 2.

Algebraic proof: Root of h'(t) cannot be a root of h(t).

(3) t_0 has multiplicity 3.

h(t) would have to change sign at least one more time.

Critical points in LC_{-1}^1

• All points of LC_{-1}^1 are **folds**.

• $\alpha'_1(t)$ and $\alpha'_2(t)$ do not change sign.

• Parametrization of LC_{-1}^2 given by a curve φ_2 as the map $\varphi_2: (0,1) \to \mathbb{R}^2$ with

$$\varphi_2(t) = \left(\frac{1}{(1-ab)t}, \frac{(1-ab)t-1}{(1-ab)(1-t)}\right)$$

Let $F \circ \varphi_2(t) = (\beta_1(t), \beta_2(t)) = \beta(t)$.

• Parametrization of LC_{-1}^2 given by a curve φ_2 as the map $\varphi_2: (0,1) \to \mathbb{R}^2$ with

$$\varphi_2(t) = \left(\frac{1}{(1-ab)t}, \frac{(1-ab)t-1}{(1-ab)(1-t)}\right)$$

Let
$$F \circ \varphi_2(t) = (\beta_1(t), \beta_2(t)) = \beta(t)$$
.

• From Lemma:

$$\lim_{t\to 0}\beta(t)=\lim_{t\to 1}\beta(t)=(0,0).$$

Direct Computation:

$$\beta'(t) = (\beta'_1(t), \beta'_2(t)) = (\rho_1(t)h(t), \rho_2(t)h(t)),$$

Direct Computation:

$$\beta'(t) = \left(\beta'_1(t), \beta'_2(t)\right) = \left(\rho_1(t)h(t), \rho_2(t)h(t)\right),$$

where $\rho_1(t) \neq 0$, $\rho_2(t) \neq 0$ for $t \in [0, 1]$ and

$$h(t) = (1 - ab)t^3 + (2ab + a^2b - 3)t^2 + (3 - ab)t - 1$$

$$h(0) = -1 < 0 \text{ and } h(1) = a^2b > 0$$

Critical points in LC_{-1}^2

Lemma

The cubic polynomial h(t) has exactly one root t_0 of multiplicity one in the interval (0, 1)

Critical points in LC_{-1}^2

Lemma

The cubic polynomial h(t) has exactly one root t_0 of multiplicity one in the interval (0, 1)

Suppose this is not the case.

- *t*⁰ has mult. one and two roots of mult. one.
- *t*⁰ has mult. one and one root of mult. two.
- *t*⁰ has mult. two and one root of mult. one.
- t₀ has mult. three.

In all cases, h(t) has an inflection point in (0, 1).

Algebraic manipulation leads to a contradiction.

In all cases, h(t) has an inflection point in (0, 1).

Algebraic manipulation leads to a contradiction.

• All points, but one, of LC_{-1}^2 are **folds**.

• $\varphi_2(t_0)$ is a **cusp**.

In all cases, h(t) has an inflection point in (0, 1).

Algebraic manipulation leads to a contradiction.

• All points, but one, of LC_{-1}^2 are **folds**.

• $\varphi_2(t_0)$ is a **cusp**.

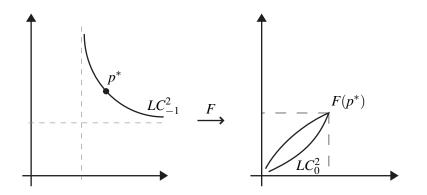
Conclusion

The Ricker Competion Model is Excellent.

Corollary

There is one cusp point $p^* \in LC^2_{-1}$ and

$$LC_0^2 \subseteq [0, f_1(p^*)] \times [0, f_2(p^*)]$$



Theorem

$$F|_{\mathcal{R}_1}: \mathcal{R}_1 \to F(\mathcal{R}_1)$$
 is a homeomorphism.

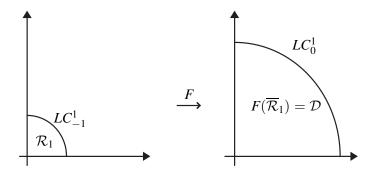


Figure : The image of \mathcal{R}_1 is the region \mathcal{D} .

A general Topological Result

Theorem (Kestelman, 1971)

Let $F : K \to \mathbb{R}^n$ be an open and locally injective map. If $K \subseteq \mathbb{R}^n$ is a compact set, ∂K is connected, and $F|_{\partial K}$ is injective, then *F* is injective.

A general Topological Result

Theorem (Kestelman, 1971)

Let $F : K \to \mathbb{R}^n$ be an open and locally injective map. If $K \subseteq \mathbb{R}^n$ is a compact set, ∂K is connected, and $F|_{\partial K}$ is injective, then *F* is injective.

Use the fold structure to show *F* is injective on $\partial \mathcal{R}_1$.

Local Injectivity at the boundary

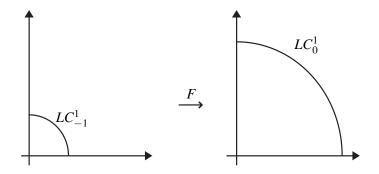


Figure : *F* is a local diffeomorphism on *int* (\mathcal{R}_1) .

Local Injectivity at the boundary

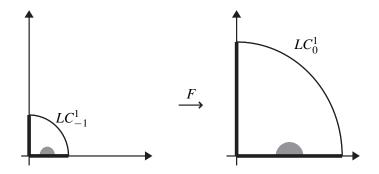


Figure : Axes are invarian and locally injective.

Local Injectivity at the boundary

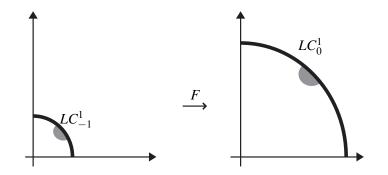
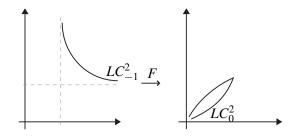


Figure : From the fold structure, *F* is injective on the boundary.

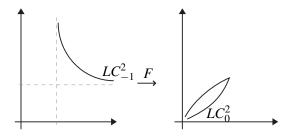
Theorem

 $F|_{\mathcal{R}_3}: \mathcal{R}_3 \to F(\mathcal{R}_3)$ is a homeomorphism.



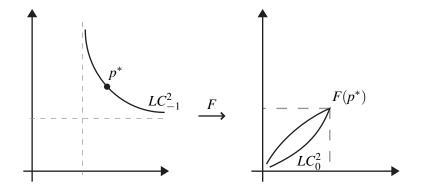
Theorem

 $F|_{\mathcal{R}_3}: \mathcal{R}_3 \to F(\mathcal{R}_3)$ is a homeomorphism.



Proof: One compactification and local injectivity at the boundary.

Local Injectivity at the boundary



Local Injectivity at the boundary

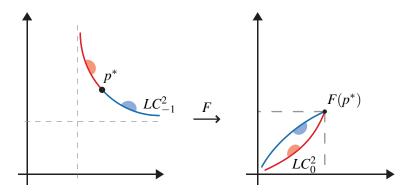


Figure : Except for the cusp p^* , all points are folds.

Local Injectivity at the boundary

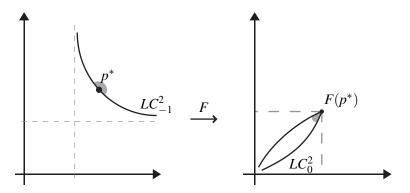


Figure : At the cusp, the local structure theorem yeilds local injectivity.

Theorem

 $F(\mathbb{R}^2_+) = \mathcal{D}$, that is, \mathcal{D} is an invariant set.

Theorem

 $F(\mathbb{R}^2_+) = \mathcal{D}$, that is, \mathcal{D} is an invariant set.

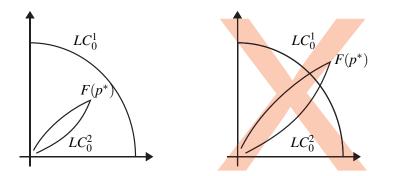


Figure : The only possible location for the image of the cusp is inside the region \mathcal{D} .

Proof of Main Geometric Result

The image of the cusp is exposed.

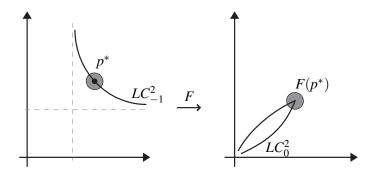
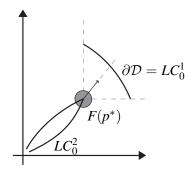


Figure : The cusp point in an interior point of the image, hence exposed.

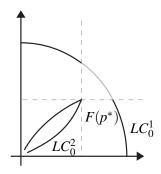
Geometry and Topology of the Ricker Map Proof of Main Geometric Result

In any direction in the first quadrant, a ray must intersect ∂D .

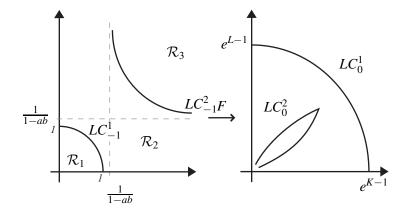


Geometry and Topology of the Ricker Map Proof of Main Geometric Result

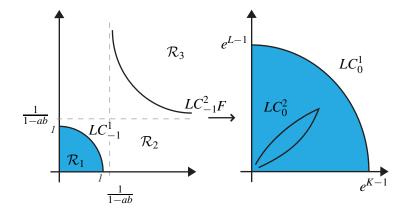
 LC_0^1 is above and to the right of LC_0^2 .



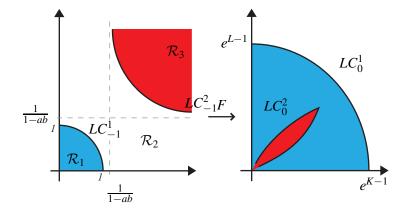
Final Geometric Conclusions



Final Geometric Conclusions



Final Geometric Conclusions



THANK YOU.