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Global Stability Analysis

Program:

Global analysis of discrete dynamical systems

Geometry of Critical sets

Application to Discrete Planar Systems, in particular
Ricker Competition Model
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Classical RCM

Ricker competition model (RCM)

(xn+1, yn+1) = F(xn, yn), n ∈ Z+

where F(x, y) = (xeK−x−ay, yeL−y−bx), where the parameters
are positive numbers.
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Classical RCM

Ricker competition model (RCM)

(xn+1, yn+1) = F(xn, yn), n ∈ Z+

where F(x, y) = (xeK−x−ay, yeL−y−bx), where the parameters
are positive numbers.
Fixed points:

one extinction fixed point (0, 0)
two exclusion fixed points on the axes (K, 0), and (0, L)
A possible coexistence fixed point (x∗, y∗) (positive).
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Singularity theory
Classical work of Whitney

Let U be an open region in R2 and F : U → R2 a smooth map.
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Singularity theory
Classical work of Whitney

Let U be an open region in R2 and F : U → R2 a smooth map.

We denote J(p) as the determinant of the Jacobian of F at p.

Definition
We say F is good at p ∈ U if either J(p) 6= 0 or ∇J(p) 6= 0 and F
is good, if it is good at every point.

Definition
We denote LC−1 to be the set of singular points, that is, the
set of points where J(p) vanishes.
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Classification of Points in Domain: Let p ∈ U.

If p ∈ LC−1, then p is singular.
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Topological Singularity

Classification of Points in Domain: Let p ∈ U.

If p ∈ LC−1, then p is singular.

If p /∈ LC−1, then p is regular.

Lemma
The singular points of a good map form smooth curves, called
the critical curve, denoted by LC−1.

Proof: Application of the Implicit Function Theorem.
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Topological Singularity

Let ϕ be a parametrization of LC−1 through p, so that ϕ(0) = p.
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Topological Singularity

Let ϕ be a parametrization of LC−1 through p, so that ϕ(0) = p.

p is a fold point if:

d
dt

(F ◦ ϕ) (0) 6= 0.

p is a cusp point if:

d
dt

(F ◦ ϕ) (0) = 0 and
d2

dt2 (F ◦ ϕ) (0) 6= 0.

Definition
A point p is an excellent point of a good map F if it is a regular,
a fold, or a cusp point. We say F is an excellent map, if it is
excellent at every point.
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Geometric Structure near a Fold

Theorem (Whitney, 1955)

Let F : U → R2 be a smooth map. If p ∈ U is a fold point, then
there are smooth coordinates (x1, y1) and (x2, y2) around p and
F(p) such that F takes the form x2 = x1 and y2 = y2

1.
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Geometric Structure near a Cusp

Theorem (Whitney, 1955)

Let F : U → R2 be a smooth map. If p ∈ U is a cusp point, then
there are smooth coordinates (x1, y1) and (x2, y2) around p and
F(p) such that F takes the form x2 = x1 and y2 = y3

1 − x1y1.
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Geometric and Topological Analysis

Definition

Let U ⊆ R2 be a compact region, p ∈ U, and v ∈ S1 (the unit
circle). We say that p is exposed in the direction of v if there
exists ε > 0 such that p + tv ∈ U for t ∈ (0, ε).
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Geometric and Topological Analysis

Definition

Let U ⊆ R2 be a compact region, p ∈ U, and v ∈ S1 (the unit
circle). We say that p is exposed in the direction of v if there
exists ε > 0 such that p + tv ∈ U for t ∈ (0, ε).

For all p ∈ int(U), p is exposed in every direction.
If p ∈ ∂U and exposed in direction v, ∃t > 0 s.t., p+ tv ∈ ∂U.

p

v

q

∂U
∂U
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Geometry and Topology of the Ricker Map

Critical curve of the RCM:

LC−1 =

{
(x, y) ∈ R2

+ : y =
1 − x

1 − (1 − ab)x
, x 6= 1

1 − ab

}
.

(1)
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Geometry and Topology of the Ricker Map

Critical curve of the RCM:

LC−1 =

{
(x, y) ∈ R2

+ : y =
1 − x

1 − (1 − ab)x
, x 6= 1

1 − ab

}
.

(1)

LC−1 has two connected components: LC1
−1 and LC2

−1.
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Geometry and Topology of the Ricker Map

1

1

1
1−ab

1
1−ab

LC1
−1

LC2
−1

R1

R2

R3
eL−1

eK−1

LC1
0

LC2
0F

Figure : The subdivision of the Domain of the Ricker competition map
by the critical curves LC1

−1 and LC2
−1 and their respective images LC1

0
and LC2

0 showing the typical geometry.

11 / 39

Geometry and Topology of the Ricker Map

Proposition
Let F be the Ricker map. The following are true.

(i) The x-axis and y-axis are invariant sets.
(ii) lim

‖p‖→∞
F(p) = (0, 0).
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Geometry and Topology of the Ricker Map

Proposition
Let F be the Ricker map. The following are true.

(i) The x-axis and y-axis are invariant sets.
(ii) lim

‖p‖→∞
F(p) = (0, 0).

In particular, F has a continuous extension to the one-point
compactification and F(R2

+) is compact.
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Geometry and Topology of the Ricker Map

Proposition
Let F be the Ricker map.

∂F(R2
+) ⊆ F(∂R2

+) ∪ LC0
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Geometry and Topology of the Ricker Map

Proposition
Let F be the Ricker map.

∂F(R2
+) ⊆ F(∂R2

+) ∪ LC0

This follows because the image of regular points cannot be
on the boundary.

Any new boundary points, must be images of critical points.
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Geometry and Topology of the Ricker Map

Theorem
The Ricker map is excellent.
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Theorem
The Ricker map is excellent.

Proof is a mixture of Geometry and Analysis.
Parametrization of LC1

−1 as ϕ1 : [0, 1] → R2 a curve from
(0, 1) to (1, 0) by:

ϕ1(t) =
(

t ,
1 − t

1 − t + abt

)

Let (F ◦ ϕ1)(t) = (α1(t), α2(t)) = α(t), we must show that

α′
1(t) and α′

2(t) do not vanish for t ∈ [0, 1].
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Ricker Map is Excellent
Critical points in LC1

−1

Direct Computation:

α′(t) =
(
α′

1(t), α
′
2(t)

)
= (ρ1(t)h(t), ρ2(t)h(t)) ,
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Critical points in LC1

−1

Direct Computation:

α′(t) =
(
α′

1(t), α
′
2(t)

)
= (ρ1(t)h(t), ρ2(t)h(t)) ,

where ρ1(t) 6= 0, ρ2(t) 6= 0 for t ∈ [0, 1] and

h(t) = (ab − 1)2 t3 +
(
−3 − a2b2 + 4 ab

)
t2 +

(
−2 ab + 3 − a2b

)
t − 1

h(0), h(1) < 0

Goal: Show that h(t) 6= 0
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Ricker Map is Excellent
Critical points in LC1

−1: Some Geometric Considerations

F
ηx

ηy

LC1
−1

p F(p)γx

γy

1

1 eL−1

eK−1

Figure : General directios of rays parallel to axes.
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Ricker Map is Excellent
Critical points in LC1

−1

Lemma
The cubic polynomial h(t) does not vanish on the interval [0, 1]

Suppose it has a root t0 ∈ (0, 1)
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−1

Lemma
The cubic polynomial h(t) does not vanish on the interval [0, 1]

Suppose it has a root t0 ∈ (0, 1)

(1) t0 has multiplicity 1.

Look at the behavior of α(t0) = q0.
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Ricker Map is Excellent
Critical points in LC1

−1

Type I Type II

α(t)α(t)

q0

q0

Figure : Possible local behaviors of the curve α at q0.
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Critical points in LC1

−1

Type IType I Type II

α(t)α(t)α(t)

q0

q0q0

Figure : Only Type II allows for possible locations of γx and γy.
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Ricker Map is Excellent
Critical points in LC1

−1: Behavior of α is Type II

q0 is exposed → h(t) has another root t1.

Type II

α

q0

∂F1(R1)
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−1: Behavior of α is Type II

q0 is exposed → h(t) has another root t1.

Type II

α

q0

∂F1(R1)

Suppose t1 has multiplicity one.

Look at the behavior of α(t1) = q1.
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Ricker Map is Excellent
Critical points in LC1

−1

Type I Type II α(t)α(t)

q1
q1

Figure : Possible local behaviors of the curve α at q1.
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Ricker Map is Excellent
Critical points in LC1

−1

Type I Type IIType I α(t)α(t)

q1 q1
q1

Figure : Only Type II allows for possible locations of γx and γy.
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Ricker Map is Excellent
Critical points in LC1

−1: Behavior of α is Type II

q1 is exposed → h(t) must change sign at least twice.
Contradiction.

Type II α

q1

∂F1(R1)
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Ricker Map is Excellent
Critical points in LC1

−1: Behavior of α is Type II

q1 is exposed → h(t) must change sign at least twice.
Contradiction.

Type II α

q1

∂F1(R1)

If t1 has multiplicity two, h(t) would have to change sign at
least two more times, contradiction.

21 / 39

Ricker Map is Excellent
Critical points in LC1

−1

(2) t0 has multiplicity 2.

Algebraic proof: Root of h′(t) cannot be a root of h(t).
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Ricker Map is Excellent
Critical points in LC1

−1

(2) t0 has multiplicity 2.

Algebraic proof: Root of h′(t) cannot be a root of h(t).

(3) t0 has multiplicity 3.

h(t) would have to change sign at least one more time.
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Ricker Map is Excellent
Critical points in LC1

−1

All points of LC1
−1 are folds.

α′
1(t) and α′

2(t) do not change sign.
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Ricker Map is Excellent
Critical points in LC2

−1

Parametrization of LC2
−1 given by a curve ϕ2 as the map

ϕ2 : (0, 1) → R2 with

ϕ2(t) =
(

1
(1 − ab) t

,
(1 − ab)t − 1
(1 − ab)(1 − t)

)

Let F ◦ ϕ2(t) = (β1(t), β2(t)) = β(t).
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Critical points in LC2

−1

Parametrization of LC2
−1 given by a curve ϕ2 as the map

ϕ2 : (0, 1) → R2 with

ϕ2(t) =
(

1
(1 − ab) t

,
(1 − ab)t − 1
(1 − ab)(1 − t)

)

Let F ◦ ϕ2(t) = (β1(t), β2(t)) = β(t).
From Lemma:

lim
t→0

β(t) = lim
t→1

β(t) = (0, 0).
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Ricker Map is Excellent
Critical points in LC2

−1

Direct Computation:

β′(t) =
(
β′

1(t), β
′
2(t)

)
= (ρ1(t)h(t), ρ2(t)h(t)) ,
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Ricker Map is Excellent
Critical points in LC2

−1

Direct Computation:

β′(t) =
(
β′

1(t), β
′
2(t)

)
= (ρ1(t)h(t), ρ2(t)h(t)) ,

where ρ1(t) 6= 0, ρ2(t) 6= 0 for t ∈ [0, 1] and

h(t) = (1 − ab)t3 + (2ab + a2b − 3)t2 + (3 − ab)t − 1 .

h(0) = −1 < 0 and h(1) = a2b > 0
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Ricker Map is Excellent
Critical points in LC2

−1

Lemma
The cubic polynomial h(t) has exactly one root t0 of multiplicity
one in the interval (0, 1)
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Ricker Map is Excellent
Critical points in LC2

−1

Lemma
The cubic polynomial h(t) has exactly one root t0 of multiplicity
one in the interval (0, 1)

Suppose this is not the case.

t0 has mult. one and two roots of mult. one.
t0 has mult. one and one root of mult. two.
t0 has mult. two and one root of mult. one.
t0 has mult. three.
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Ricker Map is Excellent
Critical points in LC2

−1

In all cases, h(t) has an inflection point in (0, 1).

Algebraic manipulation leads to a contradiction.
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Ricker Map is Excellent
Critical points in LC2

−1

In all cases, h(t) has an inflection point in (0, 1).

Algebraic manipulation leads to a contradiction.

All points, but one, of LC2
−1 are folds.

ϕ2(t0) is a cusp.

Conclusion
The Ricker Competion Model is Excellent.
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Geometry and Topology of the Ricker Map

Corollary

There is one cusp point p∗ ∈ LC2
−1 and

LC2
0 ⊆ [0, f1(p∗)]× [0, f2(p∗)]

p∗

F(p∗)FLC2
−1

LC2
0

28 / 39

Geometry and Topology of the Ricker Map

Theorem
F|R1

: R1 → F(R1) is a homeomorphism.

F

R1

F(R1) = D
LC1

−1

LC1
0

Figure : The image of R1 is the region D.

29 / 39



Geometry and Topology of the Ricker Map

A general Topological Result

Theorem (Kestelman, 1971)
Let F : K → Rn be an open and locally injective map. If K ⊆ Rn

is a compact set, ∂K is connected, and F|∂K is injective, then
F is injective.
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Geometry and Topology of the Ricker Map

A general Topological Result

Theorem (Kestelman, 1971)
Let F : K → Rn be an open and locally injective map. If K ⊆ Rn

is a compact set, ∂K is connected, and F|∂K is injective, then
F is injective.

Use the fold structure to show F is injective on ∂R1.
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Geometry and Topology of the Ricker Map
Local Injectivity at the boundary

F

LC1
−1

LC1
0

Figure : F is a local diffeomorphism on int (R1).
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Geometry and Topology of the Ricker Map
Local Injectivity at the boundary

F

LC1
−1

LC1
0

Figure : Axes are invarian and locally injective.
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Geometry and Topology of the Ricker Map
Local Injectivity at the boundary

F

LC1
−1

LC1
0

Figure : From the fold structure, F is injective on the boundary.
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Geometry and Topology of the Ricker Map

Theorem
F|R3

: R3 → F(R3) is a homeomorphism.

FLC2
−1

LC2
0
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Geometry and Topology of the Ricker Map

Theorem
F|R3

: R3 → F(R3) is a homeomorphism.

FLC2
−1

LC2
0

Proof: One compactification and local injectivity at the
boundary.
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Geometry and Topology of the Ricker Map
Local Injectivity at the boundary

p∗

F(p∗)FLC2
−1

LC2
0

Figure : Except for the cusp p∗, all points are folds.
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Geometry and Topology of the Ricker Map
Local Injectivity at the boundary

p∗

F(p∗)FLC2
−1

LC2
0

Figure : At the cusp, the local structure theorem yeilds local injectivity.
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Geometry and Topology of the Ricker Map

Theorem

F(R2
+) = D, that is, D is an invariant set.
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Geometry and Topology of the Ricker Map

Theorem

F(R2
+) = D, that is, D is an invariant set.

LC2
0LC2

0

LC1
0LC1

0
F(p∗)

F(p∗)

Figure : The only possible location for the image of the cusp is inside
the region D.
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Geometry and Topology of the Ricker Map
Proof of Main Geometric Result

The image of the cusp is exposed.

p∗

F(p∗)
FLC2

−1

LC2
0

Figure : The cusp point in an interior point of the image, hence
exposed.
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Geometry and Topology of the Ricker Map
Proof of Main Geometric Result

In any direction in the first quadrant, a ray must intersect ∂D.

F(p∗)

∂D = LC1
0

LC2
0
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Geometry and Topology of the Ricker Map
Proof of Main Geometric Result

LC1
0 is above and to the right of LC2

0.

F(p∗)
LC1

0
LC2

0
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Final Geometric Conclusions

1

1

1
1−ab

1
1−ab

LC1
−1

LC2
−1

R1

R2

R3
eL−1

eK−1

LC1
0

LC2
0F
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Final Geometric Conclusions
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0

LC2
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THANK YOU.
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