	Global Stability Analysis
Geometric methods for global stability in the Ricker competition model	Program:
E. Cabral Balreira	 Global analysis of discrete dynamical systems
Global Stability Analysis	9 Global Stability Analysis
Program:	Program:
Global analysis of discrete dynamical systems	 Global analysis of discrete dynamical systems
 Geometry of Critical sets 	 Geometry of Critical sets
	 Application to Discrete Planar Systems, in particular Ricker Competition Model
2/3	9

Classical RCM

• Ricker competition model (RCM)

 $(x_{n+1}, y_{n+1}) = F(x_n, y_n), n \in \mathbb{Z}^+$

where $F(x, y) = (xe^{K-x-ay}, ye^{L-y-bx})$, where the parameters are positive numbers.

Classical RCM

• Ricker competition model (RCM)

$$(x_{n+1}, y_{n+1}) = F(x_n, y_n), n \in \mathbb{Z}^+$$

where $F(x, y) = (xe^{K-x-ay}, ye^{L-y-bx})$, where the parameters are positive numbers.

- Fixed points:
 - one extinction fixed point (0,0)

Classical RCM

- Ricker competition model (RCM)

$$(x_{n+1}, y_{n+1}) = F(x_n, y_n), n \in \mathbb{Z}^+$$

where $F(x, y) = (xe^{K-x-ay}, ye^{L-y-bx})$, where the parameters are positive numbers.

- Fixed points:
 - one extinction fixed point (0,0)
 - two exclusion fixed points on the axes (K, 0), and (0, L)

Classical RCM

• Ricker competition model (RCM)

$$(x_{n+1}, y_{n+1}) = F(x_n, y_n), n \in \mathbb{Z}^+$$

where $F(x, y) = (xe^{K-x-ay}, ye^{L-y-bx})$, where the parameters are positive numbers.

- Fixed points:
 - one extinction fixed point (0,0)
 - two exclusion fixed points on the axes (K, 0), and (0, L)
 - A possible coexistence fixed point (x^*, y^*) (positive).

3/39

Singularity theory Classical work of Whitney	Singularity theory Classical work of Whitney
Let <i>U</i> be an open region in \mathbb{R}^2 and $F : U \to \mathbb{R}^2$ a smooth map. We denote $J(p)$ as the determinant of the Jacobian of <i>F</i> at <i>p</i> .	Let <i>U</i> be an open region in \mathbb{R}^2 and $F : U \to \mathbb{R}^2$ a smooth map. We denote $J(p)$ as the determinant of the Jacobian of <i>F</i> at <i>p</i> . Definition We say <i>F</i> is good at $p \in U$ if either $J(p) \neq 0$ or $\nabla J(p) \neq 0$ and <i>F</i> is good , if it is good at every point.
4/39	4/39
Singularity theory Classical work of WhitneyLet U be an open region in \mathbb{R}^2 and $F: U \to \mathbb{R}^2$ a smooth map.We denote $J(p)$ as the determinant of the Jacobian of F at p.DefinitionWe say F is good at $p \in U$ if either $J(p) \neq 0$ or $\nabla J(p) \neq 0$ and F is good, if it is good at every point.DefinitionDefinitionWe denote LC_{-1} to be the set of singular points, that is, the set of points where $J(p)$ vanishes.	Topological Singularity Classification of Points in Domain: Let $p \in U$. • If $p \in LC_{-1}$, then p is singular.
4/39	5/39

Topological Singularity	Topological Singularity
Classification of Points in Domain: Let $p \in U$.	Classification of Points in Domain: Let $p \in U$.
• If $p \in LC_{-1}$, then p is singular .	• If $p \in LC_{-1}$, then p is singular .
• If $p \notin LC_{-1}$, then p is regular .	• If $p \notin LC_{-1}$, then p is regular .
	Lemma The singular points of a good map form smooth curves, called
	the critical curve , denoted by LC_{-1} .
5/39	
	5/39
Topological Singularity	Topological Singularity
Topological Singularity	Topological Singularity
Topological Singularity Classification of Points in Domain: Let $p \in U$.	Topological Singularity
Topological Singularity Classification of Points in Domain: Let $p \in U$. • If $p \in LC_{-1}$, then p is singular. • If $p \notin LC_{-1}$, then p is regular.	Topological Singularity
Topological SingularityClassification of Points in Domain: Let $p \in U$.• If $p \in LC_{-1}$, then p is singular.	Topological Singularity
Topological Singularity Classification of Points in Domain: Let $p \in U$. • If $p \in LC_{-1}$, then p is singular. • If $p \notin LC_{-1}$, then p is regular. • If $p \notin LC_{-1}$, then p is regular. Lemma The singular points of a good map form smooth curves, called	Topological Singularity

Topological Singularity

Let φ be a parametrization of LC_{-1} through p, so that $\varphi(0) = p$.

• *p* is a **fold point** if:

$$\frac{d}{dt}\left(F\circ\varphi\right)\left(0\right)\neq0.$$

Topological Singularity

Let φ be a parametrization of LC_{-1} through p, so that $\varphi(0) = p$.

• *p* is a **fold point** if:

$$\frac{d}{dt}\left(F\circ\varphi\right)\left(0\right)\neq0.$$

• *p* is a **cusp point** if:

$$\frac{d}{dt}\left(F\circ\varphi\right)\left(0\right)=0 \text{ and } \frac{d^{2}}{dt^{2}}\left(F\circ\varphi\right)\left(0\right)\neq0.$$

Topological Singularity

Let φ be a parametrization of LC_{-1} through p, so that $\varphi(0) = p$.

• *p* is a **fold point** if:

$$\frac{d}{dt}\left(F\circ\varphi\right)\left(0\right)\neq0.$$

• *p* is a **cusp point** if:

$$rac{d}{dt}\left(F\circ\varphi
ight)\left(0
ight)=0 ext{ and } rac{d^{2}}{dt^{2}}\left(F\circ\varphi
ight)\left(0
ight)
eq 0.$$

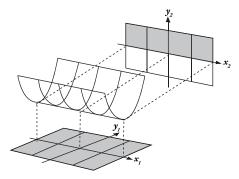
Definition

A point p is an **excellent** point of a good map F if it is a regular, a fold, or a cusp point. We say F is an **excellent** map, if it is excellent at every point.

Geometric Structure near a Fold

Theorem (Whitney, 1955)

Let $F : U \to \mathbb{R}^2$ be a smooth map. If $p \in U$ is a **fold** point, then there are smooth coordinates (x_1, y_1) and (x_2, y_2) around p and F(p) such that F takes the form $x_2 = x_1$ and $y_2 = y_1^2$.



6/39

Geometric Structure near a Cusp

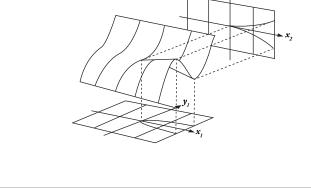
Theorem (Whitney, 1955)

Let $F : U \to \mathbb{R}^2$ be a smooth map. If $p \in U$ is a **cusp** point, then there are smooth coordinates (x_1, y_1) and (x_2, y_2) around p and F(p) such that F takes the form $x_2 = x_1$ and $y_2 = y_1^3 - x_1y_1$.

Geometric and Topological Analysis

Definition

Let $U \subseteq \mathbb{R}^2$ be a compact region, $p \in U$, and $v \in S^1$ (the unit circle). We say that p is **exposed in the direction of** v if there exists $\varepsilon > 0$ such that $p + tv \in U$ for $t \in (0, \varepsilon)$.



Geometric and Topological Analysis

Definition

Let $U \subseteq \mathbb{R}^2$ be a compact region, $p \in U$, and $v \in S^1$ (the unit circle). We say that p is **exposed in the direction of** v if there exists $\varepsilon > 0$ such that $p + tv \in U$ for $t \in (0, \varepsilon)$.

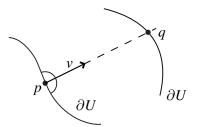
• For all $p \in int(U)$, p is exposed in every direction.

Geometric and Topological Analysis

Definition

Let $U \subseteq \mathbb{R}^2$ be a compact region, $p \in U$, and $v \in S^1$ (the unit circle). We say that p is **exposed in the direction of** v if there exists $\varepsilon > 0$ such that $p + tv \in U$ for $t \in (0, \varepsilon)$.

- For all $p \in int(U)$, p is exposed in every direction.
- If $p \in \partial U$ and exposed in direction v, $\exists t > 0$ s.t., $p + tv \in \partial U$.



8/39

Geometry and Topology of the Ricker Map

• Critical curve of the RCM:

$$LC_{-1} = \left\{ (x, y) \in \mathbb{R}^2_+ : y = \frac{1 - x}{1 - (1 - ab)x}, x \neq \frac{1}{1 - ab} \right\}.$$
(1)

• Critical curve of the RCM:

$$LC_{-1} = \left\{ (x, y) \in \mathbb{R}^2_+ : y = \frac{1 - x}{1 - (1 - ab)x}, x \neq \frac{1}{1 - ab} \right\}.$$
(1)

• LC_{-1} has two connected components: LC_{-1}^1 and LC_{-1}^2 .

Geometry and Topology of the Ricker Map

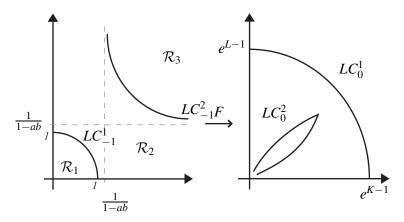


Figure : The subdivision of the Domain of the Ricker competition map by the critical curves LC_{-1}^1 and LC_{-1}^2 and their respective images LC_0^1 and LC_0^2 showing the typical geometry. Geometry and Topology of the Ricker Map

Proposition

Let F be the Ricker map. The following are true.

(i) The *x*-axis and *y*-axis are invariant sets.

i)
$$\lim_{\|p\|\to\infty} F(p) = (0,0).$$

10/39

Geometry and Topology of the Ricker Map	Geometry and Topology of the Ricker Map
	Proposition Let F be the Ricker map.
PropositionLet F be the Ricker map. The following are true.(i) The x-axis and y-axis are invariant sets.(ii) $\lim_{\ p\ \to\infty} F(p) = (0,0).$ In particular, F has a continuous extension to the one-point compactification and $F(\mathbb{R}^2_+)$ is compact.	$\partial F(\mathbb{R}^2_+) \subseteq F(\partial \mathbb{R}^2_+) \cup LC_0$
Geometry and Topology of the Ricker Map	Geometry and Topology of the Ricker Map
Proposition Let <i>F</i> be the Ricker map.	Theorem The Ricker map is excellent.

 $\partial F(\mathbb{R}^2_+) \subseteq F(\partial \mathbb{R}^2_+) \cup LC_0$

- This follows because the image of regular points cannot be on the boundary.
- Any new boundary points, must be images of critical points.

Geometry and Topology of the Ricker Map

Theorem

The Ricker map is excellent.

• Proof is a mixture of Geometry and Analysis.

Theorem

The Ricker map is excellent.

- Proof is a mixture of Geometry and Analysis.
- Parametrization of LC_{-1}^1 as $\varphi_1: [0,1] \to \mathbb{R}^2$ a curve from (0,1) to (1,0) by:

$$\varphi_1(t) = \left(t, \frac{1-t}{1-t+abt}\right)$$

Geometry and Topology of the Ricker Map

Theorem

The Ricker map is excellent.

- Proof is a mixture of Geometry and Analysis.
- Parametrization of LC_{-1}^1 as $\varphi_1: [0,1] \to \mathbb{R}^2$ a curve from (0,1) to (1,0) by:

$$\varphi_1(t) = \left(t, \frac{1-t}{1-t+abt}\right)$$

• Let $(F \circ \varphi_1)(t) = (\alpha_1(t), \alpha_2(t)) = \alpha(t)$, we must show that

Geometry and Topology of the Ricker Map

Theorem

The Ricker map is excellent.

- Proof is a mixture of Geometry and Analysis.
- Parametrization of LC_{-1}^1 as $\varphi_1: [0,1] \to \mathbb{R}^2$ a curve from (0,1) to (1,0) by:

$$\varphi_1(t) = \left(t, \frac{1-t}{1-t+abt}\right)$$

• Let $(F \circ \varphi_1)(t) = (\alpha_1(t), \alpha_2(t)) = \alpha(t)$, we must show that $\alpha'_1(t)$ and $\alpha'_2(t)$ do not vanish for $t \in [0, 1]$.

14/39

14/39

Ricker Map is Excellent	Ricker Map is Excellent
Critical points in <i>LC</i> ¹ ₋₁	Critical points in LC_{-1}^{1}
Direct Computation: $\alpha'(t) = (\alpha'_1(t), \alpha'_2(t)) = (\rho_1(t)h(t), \rho_2(t)h(t)),$ 15/39	Direct Computation: $\alpha'(t) = (\alpha'_{1}(t), \alpha'_{2}(t)) = (\rho_{1}(t)h(t), \rho_{2}(t)h(t)),$ where $\rho_{1}(t) \neq 0, \rho_{2}(t) \neq 0$ for $t \in [0, 1]$ and $h(t) = (ab - 1)^{2}t^{3} + (-3 - a^{2}b^{2} + 4ab)t^{2} + (-2ab + 3 - a^{2}b)t - 1$ $h(0), h(1) < 0$ 15/39
Ricker Map is Excellent	Ricker Map is Excellent
Critical points in LC_{-1}^{1}	Critical points in LC_{-1}^{1} : Some Geometric Considerations
Direct Computation: $\alpha'(t) = (\alpha'_1(t), \alpha'_2(t)) = (\rho_1(t)h(t), \rho_2(t)h(t)),$ where $\rho_1(t) \neq 0, \rho_2(t) \neq 0$ for $t \in [0, 1]$ and $h(t) = (ab - 1)^2 t^3 + (-3 - a^2b^2 + 4ab) t^2 + (-2ab + 3 - a^2b) t - 1$ h(0), h(1) < 0 Goal: Show that $h(t) \neq 0$	$\int_{1}^{1} \frac{LC_{-1}^{1}}{\eta_{x}} \int_{1}^{P} \frac{e^{L-1}}{\int_{1}^{\gamma_{x}}} \int_{1}^{F(p)} \frac{F(p)}{\gamma_{y}} \frac{1}{e^{K-1}}$ Figure : General directios of rays parallel to axes.

Critical points in LC_{-1}^{1}

Lemma

The cubic polynomial h(t) does not vanish on the interval [0, 1]

Suppose it has a root $t_0 \in (0, 1)$

Ricker Map is Excellent Critical points in LC_{-1}^{1}

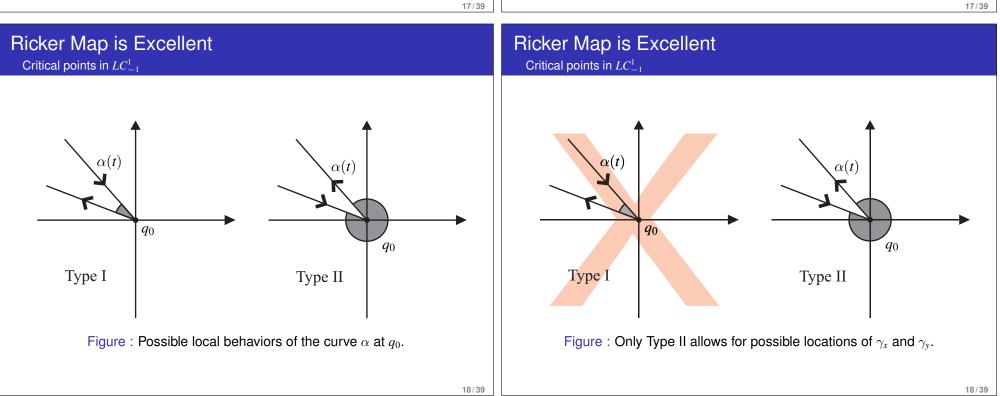
Lemma

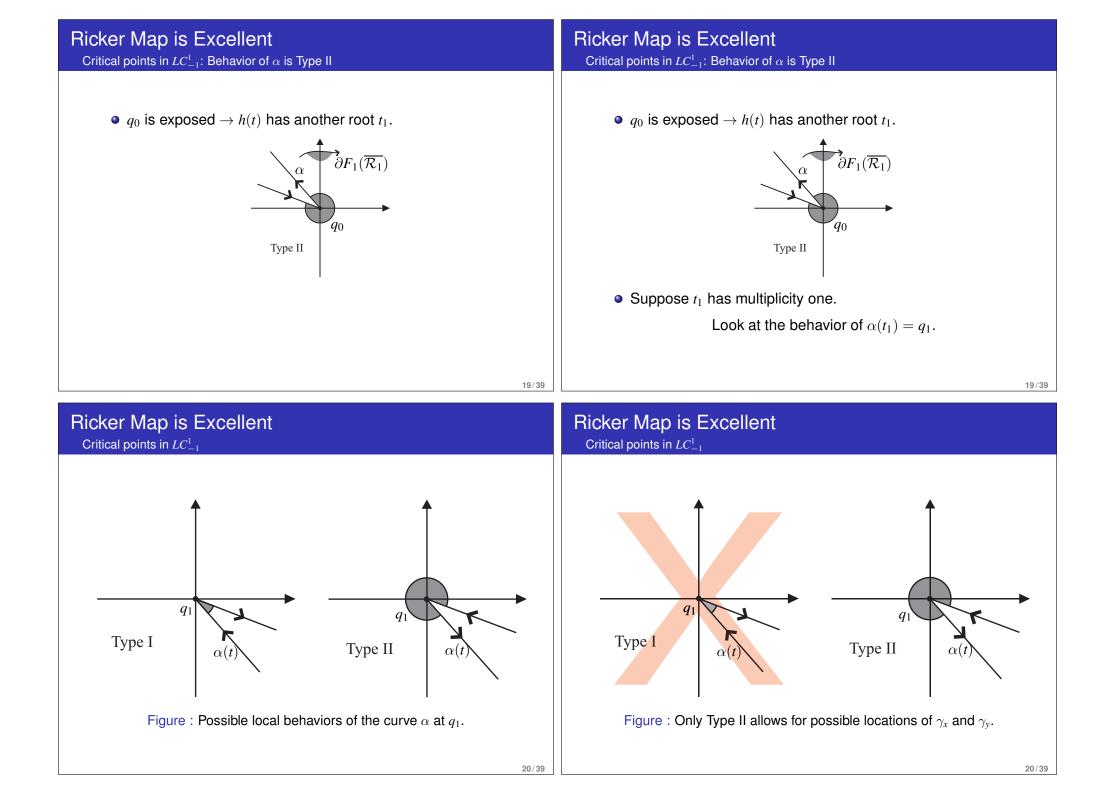
The cubic polynomial h(t) does not vanish on the interval [0, 1]

Suppose it has a root $t_0 \in (0, 1)$

(1) t_0 has multiplicity 1.

Look at the behavior of $\alpha(t_0) = q_0$.





Ricker Map is Excellent Critical points in LC_{-1}^{1} : Behavior of α is Type II	Ricker Map is Excellent Critical points in LC_{-1}^{1} : Behavior of α is Type II
<text></text>	• q_1 is exposed $\rightarrow h(t)$ must change sign at least twice. ightarrow for the function is the function of
Ricker Map is Excellent Critical points in LC_{-1}^{1}	Ricker Map is Excellent Critical points in LC_{-1}^1
(2) t_0 has multiplicity 2.	(2) t_0 has multiplicity 2.
Algebraic proof: Root of $h'(t)$ cannot be a root of $h(t)$.	Algebraic proof: Root of $h'(t)$ cannot be a root of $h(t)$.
	(3) t_0 has multiplicity 3.
	h(t) would have to change sign at least one more time.

Ricker Map is Excellent Critical points in LC_{-1}^1	Ricker Map is Excellent Critical points in LC^2_{-1}
 All points of LC¹₋₁ are folds. α'₁(t) and α'₂(t) do not change sign. 	• Parametrization of LC_{-1}^2 given by a curve φ_2 as the map $\varphi_2: (0,1) \to \mathbb{R}^2$ with $\varphi_2(t) = \left(\frac{1}{(1-ab)t}, \frac{(1-ab)t-1}{(1-ab)(1-t)}\right)$
• $\alpha_1(i)$ and $\alpha_2(i)$ to not change sign.	Let $F \circ \varphi_2(t) = (\beta_1(t), \beta_2(t)) = \beta(t)$.
23/39	24/39
Ricker Map is Excellent Critical points in LC^{2}_{-1}	Ricker Map is Excellent Critical points in LC ² _1
• Parametrization of LC_{-1}^2 given by a curve φ_2 as the map $\varphi_2: (0,1) \to \mathbb{R}^2$ with $\varphi_2(t) = \left(\frac{1}{(1-ab)t}, \frac{(1-ab)t-1}{(1-ab)(1-t)}\right)$	Direct Computation: $\beta'(t) = (\beta'_1(t), \beta'_2(t)) = (\rho_1(t)h(t), \rho_2(t)h(t)),$
Let $F \circ \varphi_2(t) = (\beta_1(t), \beta_2(t)) = \beta(t)$. • From Lemma:	
$\lim_{t \to 0} \beta(t) = \lim_{t \to 1} \beta(t) = (0, 0).$	
$t \rightarrow 0$ $t \rightarrow 1$	

Ricker Map is Excellent Critical points in LC^{2}_{-1}	Ricker Map is Excellent Critical points in LC^{2}_{-1}	
Direct Computation: $\beta'(t) = (\beta'_1(t), \beta'_2(t)) = (\rho_1(t)h(t), \rho_2(t)h(t)),$ where $\rho_1(t) \neq 0, \rho_2(t) \neq 0$ for $t \in [0, 1]$ and $h(t) = (1 - ab)t^3 + (2ab + a^2b - 3)t^2 + (3 - ab)t - 1.$ $h(0) = -1 < 0 \text{ and } h(1) = a^2b > 0$	Lemma The cubic polynomial h(t) has exactly one root t ₀ of multiplicity one in the interval (0, 1)	
	25/39	26/39
Ricker Map is Excellent	Ricker Map is Excellent	

Critical points in LC_{-1}^2

Lemma

The cubic polynomial h(t) has exactly one root t_0 of multiplicity one in the interval (0, 1)

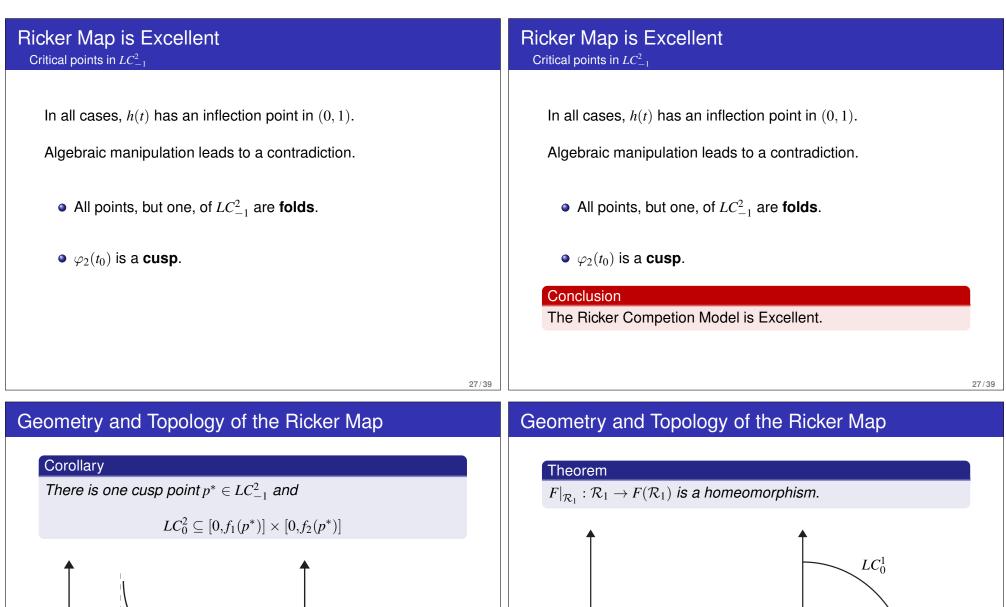
Suppose this is not the case.

- t_0 has mult. one and two roots of mult. one.
- *t*⁰ has mult. one and one root of mult. two.
- *t*⁰ has mult. two and one root of mult. one.
- t_0 has mult. three.

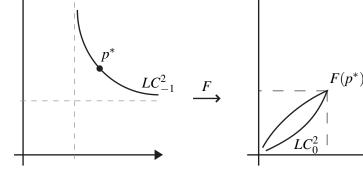
Critical points in LC_{-1}^2

In all cases, h(t) has an inflection point in (0, 1).

Algebraic manipulation leads to a contradiction.



28/39



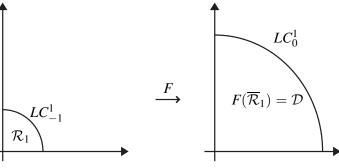
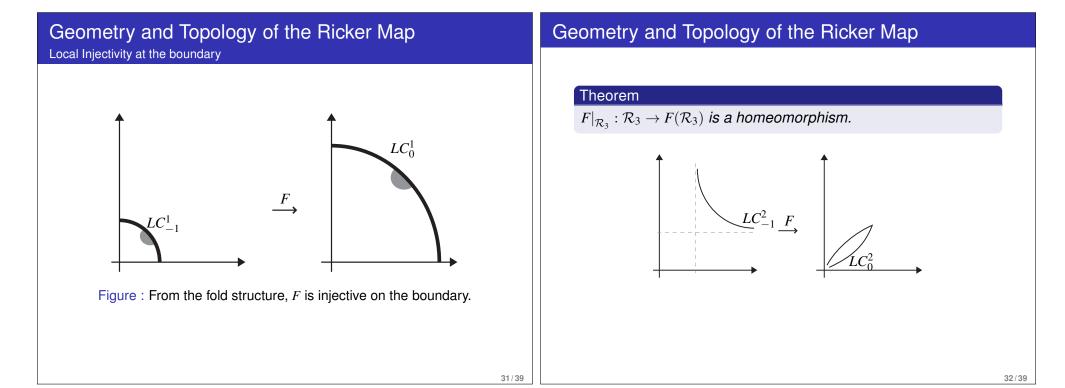


Figure : The image of \mathcal{R}_1 is the region \mathcal{D} .

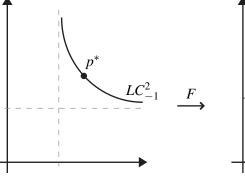
Geometry and Topology of the Ricker Map	Geometry and Topology of the Ricker Map
A general Topological Result	A general Topological Result
Theorem (Kestelman, 1971) Let $F : K \to \mathbb{R}^n$ be an open and locally injective map. If $K \subseteq \mathbb{R}^n$ is a compact set, ∂K is connected, and $F _{\partial K}$ is injective, then <i>F</i> is injective.	Theorem (Kestelman, 1971) Let $F : K \to \mathbb{R}^n$ be an open and locally injective map. If $K \subseteq \mathbb{R}^n$ is a compact set, ∂K is connected, and $F _{\partial K}$ is injective, then <i>F</i> is injective.
	Use the fold structure to show <i>F</i> is injective on $\partial \mathcal{R}_1$.
30/39 Geometry and Topology of the Ricker Map	30/39 Geometry and Topology of the Ricker Map
Local Injectivity at the boundary	Local Injectivity at the boundary
$f = \int_{-1}^{LC_{-1}^{1}} f = \int_{-1}^{LC_{0}^{1}} \int_{-1}^{LC_{0}^{1}} f = \int_{$	$f \to f$ Figure : Axes are invarian and locally injective.
31/39	31/39

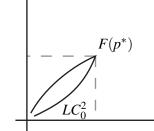


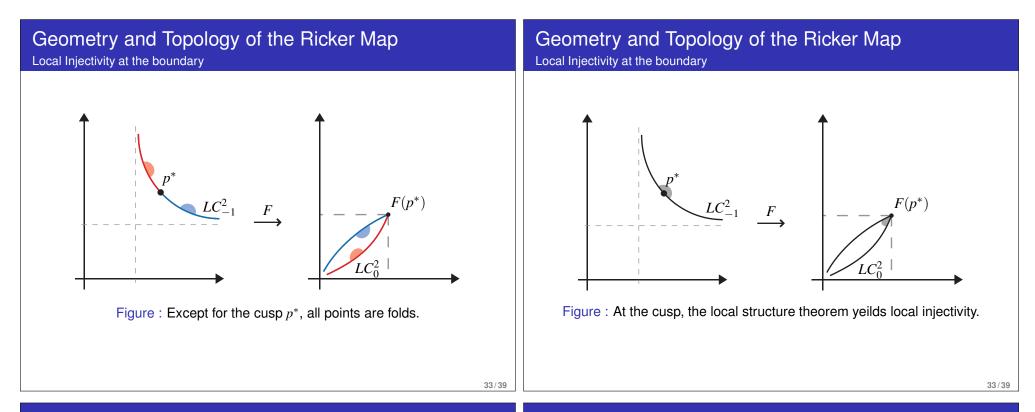
Theorem
$F _{\mathcal{R}_3}:\mathcal{R}_3 o F(\mathcal{R}_3)$ is a homeomorphism.
LC^2_{-1} F
Proof: One compactification and local injectivity at the

Proof: One compactification and local injectivity at the boundary.

Geometry and Topology of the Ricker Map Local Injectivity at the boundary







Theorem

 $F(\mathbb{R}^2_+) = \mathcal{D}$, that is, \mathcal{D} is an invariant set.

Geometry and Topology of the Ricker Map

Theorem

 $F(\mathbb{R}^2_+) = \mathcal{D}$, that is, \mathcal{D} is an invariant set.

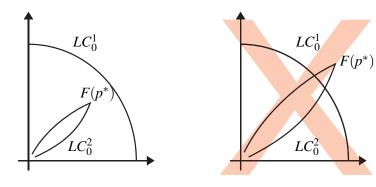
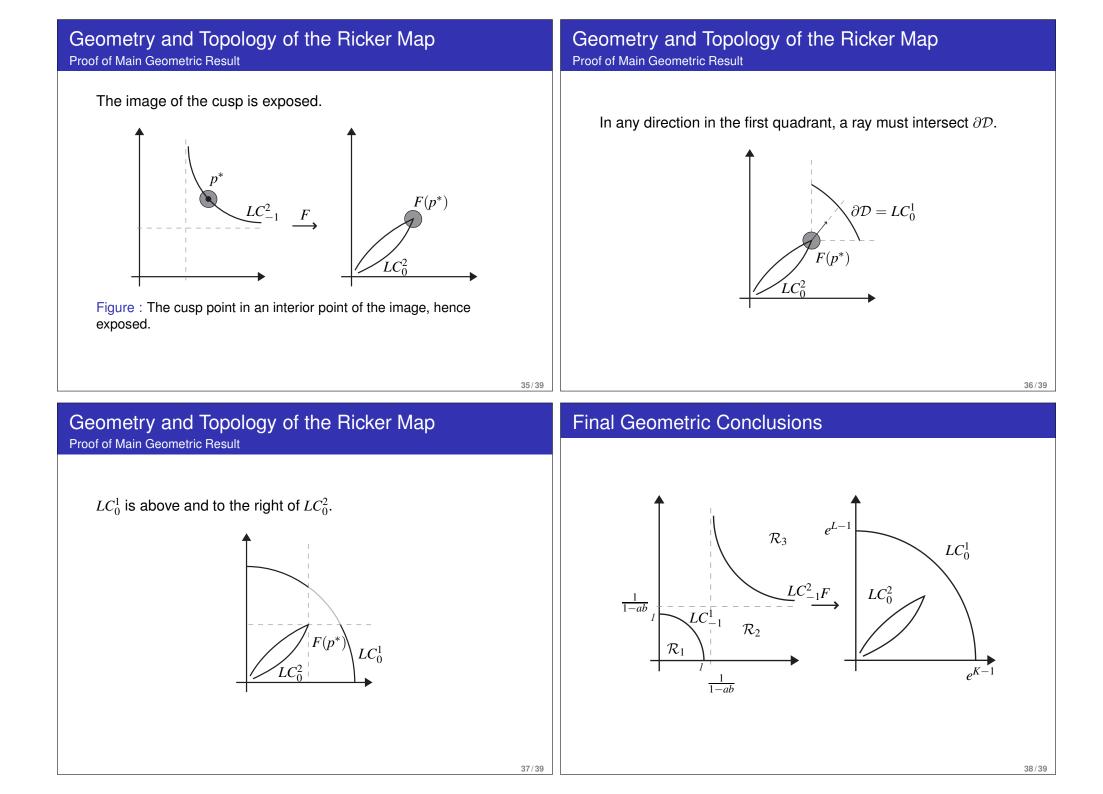
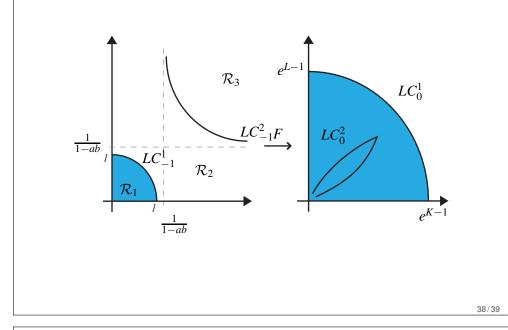


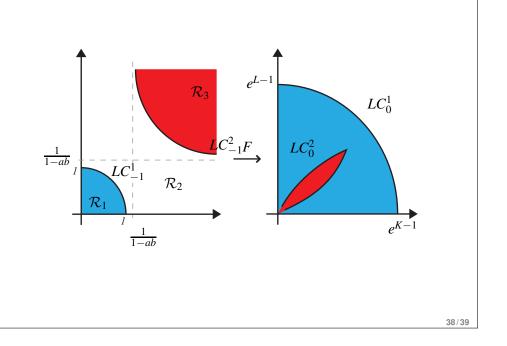
Figure : The only possible location for the image of the cusp is inside the region $\ensuremath{\mathcal{D}}.$



Final Geometric Conclusions



Final Geometric Conclusions



THANK YOU.