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Global Stability Analysis

Program:

@ Global analysis of discrete dynamical systems
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Program:

@ Global analysis of discrete dynamical systems

@ Geometry of Critical sets

@ Application to Discrete Planar Systems, in particular
Ricker Competition Model
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Classical RCM Classical RCM

@ Ricker competition model (RCM)

(15r+17.Yn4-1) = IT(Xh,;yn),ll € ZZ+_

where F(x,y) = (xeK—~% yel=y=b%) ‘where the parameters
are positive numbers.
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@ Ricker competition model (RCM)

(Jar+1,;yn4_1) = }Tcxnvlyn)all € 224_

where F(x,y) = (xeK—~% yel=y=b%) ‘where the parameters
are positive numbers.

@ Fixed points:
@ one extinction fixed point (0,0)
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Classical RCM Classical RCM

@ Ricker competition model (RCM)

(anrl,ynJrl) = F(x,,,yn),n € z*t

where F(x,y) = (xeX=*=@ yel=y=b%) where the parameters
are positive numbers.

@ Fixed points:

@ one extinction fixed point (0,0)
o two exclusion fixed points on the axes (K, 0), and (0, L)
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@ Ricker competition model (RCM)

(xn+17yn+1) = F(xmyn)an S Zt

where F(x,y) = (xeK—*=% yel=y=bx) 'where the parameters
are positive numbers.
@ Fixed points:

@ one extinction fixed point (0,0)
o two exclusion fixed points on the axes (K, 0), and (0, L)
@ A possible coexistence fixed point (x*,y*) (positive).
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Singularity theory Singularity theory

Classical work of Whitney Classical work of Whitney
Let U be an open region in R? and F : U — R? a smooth map. Let U be an open region in R? and F : U — R? a smooth map.
We denote J(p) as the determinant of the Jacobian of F at p. We denote J(p) as the determinant of the Jacobian of F at p.

We say F is good at p € U if either J(p) # 0 or VJ(p) #0and F
is good, if it is good at every point.
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Singularity theory Topological Singularity

Classical work of Whitney

Classification of Points in Domain: Let p € U.
Let U be an open region in R? and F : U — R? a smooth map.

@ If p € LC_,, then p is singular.
We denote J(p) as the determinant of the Jacobian of F at p. P ! P g

We say F is good at p € U if either J(p) # 0 or VJ(p) #0and F
is good, if it is good at every point.

We denote LC_; to be the set of singular points, that is, the
set of points where J(p) vanishes.
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Topological Singularity Topological Singularity

Classification of Points in Domain: Let p € U. Classification of Points in Domain: Let p € U.
@ If p € LC_, then p is singular. @ If p € LC_y, then p is singular.
@ If p ¢ LC_,, then p is regular. @ If p ¢ LC_,, then p is regular.

Lemma

The singular points of a good map form smooth curves, called
the critical curve, denoted by LC_,.
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Topological Singularity Topological Singularity

Let ¢ be a parametrization of LC_; through p, so that ¢ (0) = p.

Classification of Points in Domain: Let p € U.

@ If p € LC_y, then p is singular.

o If p ¢ LC_y, then pis regular.

Lemma

The singular points of a good map form smooth curves, called
the critical curve, denoted by LC_,.

Proof: Application of the Implicit Function Theorem.
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Topological Singularity Topological Singularity

Let ¢ be a parametrization of LC_; through p, so that ¢(0) = p.
@ pis a fold point if:

d

= (Fog) (0) #0.
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Let ¢ be a parametrization of LC_; through p, so that ¢(0) = p.

@ pis a fold point if:

d

T (Fop)(0) £0.
@ pis acusp pointif:

2

%(Fw)m) :Oand%(Fogo)(O) 20,
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Topological Singularity Geometric Structure near a Fold

Let ¢ be a parametrization of LC_; through p, so that ¢ (0) = p.
@ pis a fold point if:

d

5 (Fo9) (0) #0.

@ pis acusp pointif:

2
%(Fogo)(O):Oand%(Fogo)(O);éO.

Definition
A point p is an excellent point of a good map F if it is a regular,

a fold, or a cusp point. We say F is an excellent map, if it is
excellent at every point.
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Theorem (Whitney, 1955)

Let F : U — R? be a smooth map. If p € U is a fold point, then
there are smooth coordinates (x;,y,) and (x»,y>) around p and
F(p) such that F takes the form x, = x; andy, = y3.
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Geometric Structure near a Cusp

Theorem (Whitney, 1955)

LetF : U — R? be a smooth map. Ifp € U is a cusp point, then
there are smooth coordinates (x;,y;) and (x,y,) around p and
F(p) such that F takes the formx, = x; andy, = y; — xiy1.
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Geometric and Topological Analysis

Definition
Let U C R? be a compact region, p € U, and v € S' (the unit

circle). We say that p is exposed in the direction of v if there
exists e > 0 such thatp +nw € Ufort € (0,¢).
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Geometric and Topological Analysis

Definition
Let U C R? be a compact region, p € U, and v € S' (the unit

circle). We say that p is exposed in the direction of v if there
exists ¢ > Osuchthatp+n € Ufort € (0,¢).

@ Forall p € int(U), p is exposed in every direction.

9/39

Geometric and Topological Analysis

Definition
Let U C R? be a compact region, p € U, and v € S' (the unit

circle). We say that p is exposed in the direction of v if there
exists € > O such thatp + 1 € U fort € (0,¢).

@ Forall p € int(U), p is exposed in every direction.
@ If p € OU and exposed in direction v, 3t > 0 s.t., p+1v € OU.
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Geometry and Topology of the Ricker Map

Geometry and Topology of the Ricker Map

@ Critical curve of the RCM:

1— 1
LC_| = {(xvy) € Ri— Y= 1 — (1 _xab))c’x?é l—ab}'
(1)
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@ Critical curve of the RCM:

1— 1
LC_| = {(x,y) GR%F Y= 1 — (1 _xab))c’x?é l—ab}'
(1)

@ LC_, has two connected components: LC' | and LC?,.
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Geometry and Topology of the Ricker Map

A A
|
: L—1
: R3 ¢ .
‘ LC)
|
|
| | L F | L
T—ab |~~~ = [~~~ ~~-- —
I 7%2
Ri | > >
1 K—1
1 e
1—ab

Figure : The subdivision of the Domain of the Ricker competition map
by the critical curves LC! , and LC? , and their respective images LC}
and LC} showing the typical geometry.
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Geometry and Topology of the Ricker Map

Let F be the Ricker map. The following are true.
() The x-axis and y-axis are invariant sets.

(i) lim F(p) = (0,0).

llpl|—o0
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Geometry and Topology of the Ricker Map Geometry and Topology of the Ricker Map

Let F be the Ricker map.

Proposition
Let F be the Ricker map. The following are true.
() The x-axis and y-axis are invariant sets.
(i) lim F(p) = (0,0).
lIpll—00
In particular, F has a continuous extension to the one-point
compactification and F(R?%) is compact.

OF(R%) C F(OR%) U LCy
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Geometry and Topology of the Ricker Map Geometry and Topology of the Ricker Map

Let F be the Ricker map. The Ricker map is excellent.

OF(R%) C F(ORZ) U LCy

@ This follows because the image of regular points cannot be
on the boundary.

@ Any new boundary points, must be images of critical points.
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Geometry and Topology of the Ricker Map

Geometry and Topology of the Ricker Map

The Ricker map is excellent.

@ Proof is a mixture of Geometry and Analysis.
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The Ricker map is excellent.
@ Proof is a mixture of Geometry and Analysis.

@ Parametrization of LC! | as ¢ : [0, 1] — R? a curve from
(0,1) to (1,0) by:

PR
=\ T T anr
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Geometry and Topology of the Ricker Map Geometry and Topology of the Ricker Map

The Ricker map is excellent.

@ Proof is a mixture of Geometry and Analysis.

@ Parametrization of LC! | as ¢ : [0, 1] — R? a curve from
(0,1) to (1,0) by:

1—1t

p1(t) = (fam)

@ Let (Fow)(t) = (a(t), an(t)) = a(t), we must show that
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The Ricker map is excellent.

@ Proof is a mixture of Geometry and Analysis.

@ Parametrization of LC! | as ¢ : [0, 1] — R? a curve from
(0,1) to (1,0) by:

1 —1¢

wil) = (“ m)

@ Let (Foy)(t) = (a(t), an(t)) = a(t), we must show that

o} (1) and o4 (t) do not vanish for 7 € [0, 1].
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Ricker Map is Excellent Ricker Map is Excellent
Critical points in LC. Critical points in LCL

Direct Computation: Direct Computation:
o (1) = (ai (1), a4(1)) = (p1(Dh(1), p2(D(1)) , o (1) = (o) (1), a5(1)) = (p1(1)h(t), p2(D)A(1)) |

where p(t) # 0, p2(t) #0for ¢ € [0,1] and
h(t) = (ab—1)° £ + (=3 — a®p* + dab) # + (—2ab+3 — a*b) 1 — |

h(0),h(1) < O
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Ricker Map is Excellent Ricker Map is Excellent
Critical points in LC™ Critical points in LCL ;: Some Geometric Considerations

Direct Computation:

o/ (1) = (a4 (1), 05(r)) = (pr(0)h(1), p2(1)h(1)) ,

| LC!,
where p;(t) # 0, pa(t) # 0 for ¢ € [0, 1] and Tk p
h(t) = (ab— 127 + (=3 — a®b* + 4ab) 2 + (—2ab+3 — d’b) 1 — | W

1

h(0),h(1) <0
Figure : General directios of rays parallel to axes.
Goal: Show that i(r) # 0
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Ricker Map is Excellent

Critical points in LC.

Lemma

The cubic polynomial h(t) does not vanish on the interval [0, 1]

Suppose it has a root 1y € (0,1)
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Ricker Map is Excellent
Critical points in LCL

Lemma

The cubic polynomial h(t) does not vanish on the interval [0, 1]

Suppose it has a root 1y € (0, 1)

(1) 7 has multiplicity 1.

Look at the behavior of a(zy) = qo.
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Ricker Map is Excellent
Critical points in LC.,

A
a(r)
>
q0
Type I Type 11
Figure : Possible local behaviors of the curve « at g.
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Ricker Map is Excellent
Critical points in LC" ,

90

Type |

Type 11

Figure : Only Type Il allows for possible locations of v, and ;.
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Ricker Map is Excellent

Critical points in LC" ,: Behavior of « is Type Il

Ricker Map is Excellent
Critical points in LC" ;: Behavior of « is Type |I

@ ¢ is exposed — h(t) has another root 7.

>

o | OFi(R1)

Type Il
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@ ¢ is exposed — h(t) has another root 7.

<

o | OFi(R1)

q0
Type Il

@ Suppose 1; has multiplicity one.

Look at the behavior of a(#;) = g;.
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Ricker Map is Excellent
Critical points in LC.,

q1

Type I

at) Type 1 at

Figure : Possible local behaviors of the curve « at ¢.

20/39

Ricker Map is Excellent

Critical points in LC™

2 q1

Type (1) Type II at

Figure : Only Type Il allows for possible locations of v, and ;.
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Ricker Map is Excellent

Critical points in LC" ,: Behavior of « is Type Il

Contradiction.

~

OF(Ry)

Type Il «

@ ¢; is exposed — h(r) must change sign at least twice.
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Ricker Map is Excellent
Critical points in LC" ;: Behavior of « is Type |I

@ ¢; is exposed — h(r) must change sign at least twice.

Contradiction.

OF(Ry)

Type Il o

@ If 1; has multiplicity two, A(r) would have to change sign at
least two more times, contradiction.
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Ricker Map is Excellent Ricker Map is Excellent
Critical points in LCL, Critical points in LCL ,

(2) 1o has multiplicity 2.

Algebraic proof: Root of 4’ (¢) cannot be a root of A(z).
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(2) 1o has multiplicity 2.

Algebraic proof: Root of ' (¢) cannot be a root of A(z).

(3) 1o has multiplicity 3.

h(t) would have to change sign at least one more time.
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Ricker Map is Excellent

Critical points in LC.

@ All points of LC! | are folds.

@ o) () and o4 (r) do not change sign.
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Ricker Map is Excellent
Critical points in LC?

@ Parametrization of LC? | given by a curve ¢, as the map
¢ : (0,1) — R? with

1 (1 —ab)t—1
Pa(t) = <(1 —ab)t’ (1 —ab)(1 — I))

Let F o (1) = (81 (1), Ba(1)) = B(1).

24/39

Ricker Map is Excellent Ricker Map is Excellent
Critical points in LC? , Critical points in LC? ,

@ Parametrization of LC? | given by a curve ¢, as the map
@21 (0,1) — R? with

B 1 (1 —ab)t—1
pa(t) = ((1 —ab)t’ (1 —ab)(1 — f))

Let F o pa(t) = (B1(1), B2(2)) = B(1).

@ From Lemma:

lim (1) = lim 5(1) = (0,0).
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Direct Computation:

B'(1) = (B1(1), Ba(1)) = (p1 (1) (1), p2(1)A(1)) ,
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Ricker Map is Excellent

Critical points in LC?

Direct Computation:

B'(r) = (B1(1), Ba(1)) = (p1(D)h(1), p2(D)A(1))
where p(t) # 0, p2(t) #0forr € [0,1] and

h(t) = (1 — ab)® + (2ab + a*b — 3)* + (3 —ab)t — 1 .

h(0) = —1 < 0and h(1) =a’*h >0
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Ricker Map is Excellent
Critical points in LC?

Lemma

The cubic polynomial h(t) has exactly one root t, of multiplicity
one in the interval (0, 1)
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Ricker Map is Excellent
Critical points in LC ,

Lemma

The cubic polynomial h(t) has exactly one root ty of multiplicity
one in the interval (0, 1)

Suppose this is not the case.

@ 79 has mult. one and two roots of mult. one.
@ 79 has mult. one and one root of mult. two.
@ 19 has mult. two and one root of mult. one.
@ 1y has mult. three.

~ 7

7 7 S~
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Ricker Map is Excellent
Critical points in LC? ,

In all cases, A(r) has an inflection point in (0, 1).

Algebraic manipulation leads to a contradiction.

27/39




Ricker Map is Excellent

Ricker Map is Excellent

Critical points in LC?

In all cases, A(r) has an inflection point in (0, 1).

Algebraic manipulation leads to a contradiction.

@ All points, but one, of LC? , are folds.

@ (1) is a cusp.
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Critical points in LC?

In all cases, A(r) has an inflection point in (0, 1).

Algebraic manipulation leads to a contradiction.

@ All points, but one, of LC? , are folds.

@ (1) is a cusp.

Conclusion
The Ricker Competion Model is Excellent.
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Geometry and Topology of the Ricker Map

Corollary

There is one cusp pointp* € LC% | and
LCG S [0.£1(p")] x [0,/2(p")]

A A
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Geometry and Topology of the Ricker Map

Theorem
F|r, : R1 = F(Ry) is a homeomorphism.

A A

LC',
R

Figure : The image of R, is the region D.
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Geometry and Topology of the Ricker Map

A general Topological Result

Theorem (Kestelman, 1971)

LetF : K — R" be an open and locally injective map. If K C R”"
is a compact set, 0K is connected, and F|yk Is injective, then
F is injective.
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Geometry and Topology of the Ricker Map

A general Topological Result

Theorem (Kestelman, 1971)

Let F : K — R" be an open and locally injective map. If K C R”"
is a compact set, 0K is connected, and F |y is injective, then
F is injective.

Use the fold structure to show F is injective on 0R;.

30/39

Geometry and Topology of the Ricker Map

Geometry and Topology of the Ricker Map

Local Injectivity at the boundary

LC}

\LCI_I

Figure : F is a local diffeomorphism on int (R;).

»
Ll

v
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Local Injectivity at the boundary

LC}

1

LC!,
i l > A >

Figure : Axes are invarian and locally injective.
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Geometry and Topology of the Ricker Map

Geometry and Topology of the Ricker Map

Local Injectivity at the boundary

LC}

-...Iiiijlﬂ

Figure : From the fold structure, F is injective on the boundary.
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Theorem
Flr, : Rs — F(R3) is @ homeomorphism.

A A

LC*| F

B — /
LC?

|
|
1
1
1
|
|
|
|
————p ===
1
1
|
|

»
»

v
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Geometry and Topology of the Ricker Map

Theorem
Flr, : R3s = F(R3) is @ homeomorphism.

A A

= -1 5 /
| . LC2

Proof: One compactification and local injectivity at the
boundary.
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Geometry and Topology of the Ricker Map

Local Injectivity at the boundary
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Geometry and Topology of the Ricker Map

Local Injectivity at the boundary

|
Lc |

F(p)

Figure : Except for the cusp p*, all points are folds.
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Geometry and Topology of the Ricker Map

Local Injectivity at the boundary

F(p*)
|
Lcg |

>

Figure : At the cusp, the local structure theorem yeilds local injectivity.
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Geometry and Topology of the Ricker Map

Theorem

F(R?) =D, that is, D is an invariant set.
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Geometry and Topology of the Ricker Map

Theorem

F(R?3) =D, thatis, D is an invariant set.

A

LC}

F(p*

LC}

A

A

LC}
F(p®)

LC}

| .

L

Figure : The only possible location for the image of the cusp is inside

the region D.
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Geometry and Topology of the Ricker Map

Proof of Main Geometric Result

The image of the cusp is exposed.

A

v

LC}

b
Ll

Figure : The cusp point in an interior point of the image, hence

exposed.
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Geometry and Topology of the Ricker Map

Proof of Main Geometric Result

In any direction in the first quadrant, a ray must intersect 0D.

A
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Geometry and Topology of the Ricker Map

Proof of Main Geometric Result

LC} is above and to the right of LC}.

4
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Final Geometric Conclusions

LC}

LC}
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Final Geometric Conclusions
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Final Geometric Conclusions
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THANK YOU.
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