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Two introductory examples

xn+1 = axn

where a > 0

xn+1 =
a + xn

xn−1

where also a > 0
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perturbations

If in both equations we perturb the parameters

xn+1 = (a + pn)xn

xn+1 =
(a + pn) + xn

xn−1

we obtain non-autonomous systems which can be formulated by

xn+1 = fn(xn)
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Non-autonomous discrete systems (n.a.d.s.)

That is by (X , f∞) where f∞ = (fn)∞n=0 and fn ∈ C (X ,X ) for all n
(X , f∞) is called a non-autonoumous discrete system (n.a.d.s.)
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(n.a.d.s.)

We use the notation

f n
i = fi+(n−1) ◦ fi+(n−2) ◦ ....fi+2 ◦ fi+1 ◦ fi

with i ≥ 0 , n > 0 and f 0
i = Identity on X and

Trf∞(x0) = (f n
0 )∞n=0 = (xn)∞n=0
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(n.a.d.s.)

We are dealing with the stability or instability in the Lyapunov sense of
such systems
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Lyapunov exponents for autonomous systems

They were introduced by Aleksandr Lyapunov in 1892 in his Doctoral
Memoir: The general problem of the stability of motion

It is a extended practice, especially in experimental and applied dynamics,
to associate the idea of orbits having a positive Lyapunov exponent with
instability and negative Lyapunov exponent with stability of orbits in
dynamical system. Stability and instability of orbits are defined in
topological terms while Lyapunov exponents is a numerical characteristic
calculated all along the orbit
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definition of Lyapunov exponents

Definition

Let f : R→ R be a C 1-map. For each point x0 the Lyapunov exponent of
x0, λ(x0) is

λ(x0) = lim n→∞
1

n
log(|(f n)′(x0)|) = lim n→∞

1

n

n−1∑
j=0

log(|f ′(xj)|)

where xj = f j(x0) (if the limit exists).
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stability and instability in Lyapunov sense

Definition

The forward trajectory Trf (x0) is said to be Lyapunov stable if for any
ε > 0 there is δ > 0 such that whenever |y − x0| < δ is
|f n(y)− f n(x0)| < ε for all n ≥ 0.
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stability and instability in Lyapunov sense

Lyapunov instability is equivalent to sensitivity dependence on initial
conditions (sdic)

Definition

Trf (x0) exhibits (sdic), if there exists ε > 0 such that given any δ > 0
there is y holding |y − x0| < δ and N > 0 such that

|f n(y)− f n(x0)| ≥ ε

for all n ≥ N
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stability and instability in Lyapunov sense

In the following examples, we consider the trajectories of 0 of two maps
and obtain that we can have instability trajectories with negative Lyapunov
exponents and stable trajectories with positive Lyapunov exponents
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Map f introduced by Demir and Koçak
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Figure: Map f
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Map g introduced by Demir and Koçak
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Figure: Map g
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The strong Lyapunov exponent is

Φ(x) = limn→∞
1

n
Σk+n−1

j=k log(|f ′(xj)|)

if this limit exists uniformly with respect to k ≥ 0
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Results:

1 Let f ∈ C 1(I ). If the forward trajectory of x ∈ I has positive strong
Lyapunov exponent, then the orbit has (sdic)

2 Let f ∈ C 1([0, 1)). If the forward trajectory of x ∈ [0, 1) has negative
strong Lyapunov exponent, then the orbit is Lyapunov stable
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BC used the notion of Lyapunov exponents for non-autonomous systems
on R and C 1 −maps for the difference equation

xn+1 = anxn

as an immediate extension of the formula to calculate the Lyapunov
exponents in the autonomous case (if the limit exists) as

λ(x) = limn→∞
1

n
log|(f n

0 )′(x)| = limn→∞
1

n

n−1∑
j=0

log|f ′j (xj)|

where xj = f j
0 (x)
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Lyapunov exponents for the non-autonomous case

They considered the case when

an = a + p(n)

where

pn = [a + ε(bn + βcn)

holding a > 1 but closed to 1, 0 < β > 1 and

bn =
√

2sinn

cn =
√

2sn[2K (m)(n + Θ)/π; m]

with ε > 0 and m the modulus of the elipticity of senam map
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Lyapunov exponents for the non-autonomous case

The Lyapunov exponent has the following values:

1 If β = 0, then if

loga >
1

2
(
ε

a
)2

then the system has for all initial conditions on (0,∞) constant
positive Lyapunov exponents and has (dsic)

2 If β 6= 0, then for fixed modulus m and in some range of Θ, the
system has also constant positive Lyaunov exponents. Also it is
proved the system has (dsci)
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Stability and instability of orbits in periodic
non-autonomous systems

Take a periodic block composed of the maps f and g , {f0, f1, ..., fm−1}
where p < m of them are the map f and the rest g and consider the
non-autonomous periodic system of period m = p + q where fi = f for
i = 0, 1, ..., p − 1 and fj = g for j = p, ...,m − 1

If we compute the Lyapunov exponent 0 of such periodic non-autonomous
system we have for the f n

0 map
For

n = km + 1 is
k(p − q) + 1

km + 1
log2

n = km + 2 is
k(p − q) + 2

km + 2
log2

...

n = km + p is
k(p − q) + p

km + p
log2

...

n = (k + 1)m is
(k + 1)(p − q)

(k + 1)m
log2
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Stability and instability of orbits in periodic
non-autonomous systems

When n→∞, the Lyapunov exponent of the trajectory of 0 is

λ(0) =
p − q

m
log2
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Stability and instability of orbits in non-periodic
non-autonomous systems

When we choose a non-periodic block of maps f and g the orbit of 0
continues being instable if the map g appears infinite times

Theorem

(BC) Let f∞ a non-periodic sequence of maps f and g. If the map g
appears infinite times, then the trajectory of 0 is Lyapunov instable.
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Let X ⊂ Rm and d any metric on it. If (xn)∞n=0 and (x ′n)∞n=0 are two
trajectories starting from nearby initial states x0 and x ′0 and write
δxn = x ′n − xn. If f has continuous partial derivatives in every xi , then,
iterating the map, we have the linear approximation (DF (x) denotes the
differential of the map F : Rn → Rn at the point x).

δxn ' Df n(x0)δx0 = (
n−1∏
i=0

Df (xi )δx0

where the (i , j) element of the matrix Df (x) is given by ∂fi
∂xj

and where fi
and xj are the components of f and x in local coordinates on X
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Given a matrix A, we denote by At the transpose of A. Let the matrix

(Df n(x0)t)(Df n(x0))

where

Df n(x0) = Df (xn−1)(Df (xn−2)...(Df (x1)Df (x0)

have eigenvalues in x0 given by µi (n, x0), for i = 1, 2, ...,m such that
µ1(n, x0) ≥ µ2(n, x0) ≥ ... ≥ µm(n, x0). Then the ith local Lyapunov
exponent at x0 is defined by:

λi (x0) = lim
n→∞

1

2n
log(|µi (n, x0)|)

if this limit exists. In [?] it is possible to state conditions for the existence
of such limit. Now we recall the notions of instability and stability in the
Lyapunov sense
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Markus-Lyapunov Fractal

We consider the logistic equation

xn+1 = rn(1− xn)

and the sequence of blocks BBBBB.... where B = 112112.... and
112 = r1r1r2
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Markus-Lyapunov Fractal

2.jpg

Figure: Fractal Markus-Lyapunov
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Markus-Lyapunov Fractal
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Figure: Fractal Markus-Lyapunov
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We propose two dynamical systems, one defined in [0, 1]2 which has a
forward trajectory with a positive Lyapunov exponent but not having
sensitive dependence on initial conditions and other defined in [0, 1)2

which has a forward trajectory with a negative Lyapunov exponent but
having sensitive dependence on initial conditions. The examples are two
dimensional versions of those mentioned in the introduction. The maps we
are using are examples of permutation maps.
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Example

We are going to obtain a continuous function F = (f , g) in [0, 1]2 such
that the forward trajectory of (0, 0) has a positive Lyapunov exponent, but
has not has no sensitive dependence on initial conditions.
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a) The map f : [0, 1]→ [0, 1] was introduced in [?]

f (x) =


2x − 1 +

1

2n+1
an < x ≤ bn, x ∈ [0, 1]

5n+2 − 22

2 · 5n+2 − 11
(x − bn) + 1 +

2

10n+1
− 1

2n+1
bn < x ≤ an+1

1 x = 1

with an = 1− 2−n − 10−n−1, bn = 1− 2−n + 10−n−1, n = 0, 1, 2, ....
b) Now we define another map g : [0, 1]→ [0, 1]

g(x) =



3x +
1

2
0 ≤ x ≤ 1

15

6

127
x +

7

10
− 2

635

1

15
< x ≤ 1

2
− 1

100

3x +
1

2
− 5

2n+1
(2n − 1) an < x ≤ bn

5n+2 − 33

2 · 5n+2 − 11
(x − bn) + 1 +

3

10n+1
− 1

2n+1
bn < x ≤ an+1

1 x = 1

with an = 1− 2−n − 10−n−1, bn = 1− 2−n + 10−n−1, n = 1, 2, ....
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The map F (x , y) = (f (y), g(x)) is continuous in [0, 1]2, because f y g are
continuous in [0, 1].
We consider the trajectory of (0, 0):

{(0, 0), (x1, y1), (x2, y2), · · · }

In every points of the trajectory, the map is differentiable (except (0, 0))
Since f y g are differentiable maps on right of 0, we define

DF (0+, 0+) =

(
0 limy→0+ f (y)

limx→0+ g(x) 0

)
=

(
0 2
3 0

)
DF (x1, y1) = DF 2(0, 0) =

(
6 0
0 6

)
DF (x2, y2) = DF 3(0, 0) =

(
0 12

18 0

)
and

DF 2n(0, 0) =

(
6n 0
0 6n

)
DF 2n−1(0, 0) =

(
0 2 · 6n

3 · 6n 0

)
for n = 1, 2, ....
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Now we compute the eigenvalues (DF n)t)(DF n):

For n > 1 we have

(DF 2n−1(0, 0))tDF 2n−1(0, 0) =

(
32 · 6n 0

0 22 · 6n

)
and the maximum value of the eigenvalues of such matrix is

µ(2n − 1, (0, 0)) =
1

2n − 1
((n + 1) log 3 + n log 2)

For n > 1 we have

DF 2n(0, 0) =

(
6n 0
0 6n

)
whose eigenvalue is

µ(2n, (0, 0)) =
1

2
(log 3 + log 2)
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Therefore,

λ1(0, 0) = lim
n→∞

1

2n
log(|µ1(n, (0, 0))|) =

1

2
log 6 > 0

it is easy to prove that the forward trajectory of (0, 0) has not sensitive
dependence on initial conditions
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The map is continuous at every (x , y) ∈ I 2.
To see it, let ε > 0, we can chose k such that 1/2k < ε. As f ′(y) > 0 and
g ′(x) > 0 on the forward orbit of (0, 0), si se considera la distancia del
máximo:

F k(0, 0) = (1− 1

2mk ′m
, 1− 1

2k
)

then

|F k(x , y)− F k(0, 0)| ≤ |( 1

2k
,

1

2k
)| =

1

2k
< ε

for n ≥ k and 0 < x < δ̄ it remains to prove that the last inequality holds
for n < k , but it is made using that F j is continuous and then, given ε > 0
there exists δj such that if 0 < |(x , y)| < δj , |F j(x , y)− F j(0, 0)| < ε for
j = 1, ..., n − 1. Then if we take

δ = min
{
δ1, ..., δn−1, δ̄

}
and 0 < x < δ ⇒ |F k(x , y)−F k(0, 0)| < ε for all k > 0

33 / 39



Example

We are going to obtain a continuous function G = (f 2, g) in [0, 1)2 such
that the forward trajectory of (0, 0) has a negative Lyapunov exponent,
but it has sensitive dependence on initial conditions.
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a) f : [0, 1)→ [0, 1) is defined by

f (x) =



1

2
x +

1

2
0 ≤ x < 7/16 or an ≤ x < bn

(2n+1 − 4n+1 − 2−1)(x + 2−n − 2 · 4−n−1 − 1) bn ≤ x < cn

1− 2−n−2 − 2 · 4−n−3

2−n−1 − 9 · 4−n−2
(x + 2−n − 2 · 4−n−1 − 1) cn ≤ x < an+1

where an = 1− 2−n − 4−n−1, bn = 1− 2−n + 4−n−1,
cn = 1− 2−n + 2 · 4−n−1 for n = 1, 2, ....

b) g : [0, 1]→ [0, 1] is defined by

g(x) =



3x +
1

2
0 ≤ x ≤ 1

15

6

127
x +

7

10
− 2

635

1

15
< y ≤ 1

2
− 1

100

3x +
1

2
− 5

2n+1
(2n − 1) an < x ≤ bn

5n+2 − 33

2 · 5n+2 − 11
(x − bn) + 1 +

3

10n+1
− 1

2n+1
bn < x ≤ an+1

1 x = 1

where an = 1− 2−n − 10−n−1, bn = 1− 2−n + 10−n−1, para
n = 1, 2, ....
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The map G (x , y) = (f 2(y), g(x)), is continuous in [0, 1)2 since f and g
are continuous in [0, 1).
Let us consider the trajectory of (0, 0), denoted by

{(0, 0), (x1, y1), (x2, y2), · · · }
with

G 2n(0, 0) =

(
1− 1

23n
, 1− 1

23n

)
, G 2n−1(0, 0) =

(
1− 1

23n−1
, 1− 1

23n−2

)
for n = 1, 2, ...
Similarly to the former example, we have

DG (0, 0) =

(
0 1/4
3 0

)
DG (x1, y1) = DG 2(0, 0) =

(
3/4 0

0 3/4

)
DG (x2, y2) = DG 3(0, 0) =

(
0 3/42

32/4 0

)
and in general we have

DG 2n(0, 0) =

(
(3/4)n 0

0 (3/4)n

)
DG 2n−1(0, 0) =

(
0 3 · (1/4)n

3 · (1/4)3n 0

)
for n = 1, 2, ....
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Now we compute the eigenvalues of (DGn)t · DGn for n = 1, 2, ...:

Eigenvalues of DG 2n−1(0, 0) are 0
3n

4n−1

3n−1

4n
0


 0

3n−1

4n

3n

4n−1
0

 =

 32n

42(n−1)
0

0
32(n−1)

42n


therefore

1

2n − 1
(n log 3− (n − 1) log 4)

Eigenvalues of DG 2n(0, 0):
The related matrix is diagonal and then the we have the double

eigenvalue

(
3

4

)n

. Consequently we have

n

2n
(log 3− log 4)
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Therefore

λ1(0, 0) = lim
n→∞

1

2n
log(|µ1(n, (0, 0))|) =

1

2
log

(
3

4

)
< 0

It is left to prove that the forward trajectory of (0, 0) has sensitive
dependence on initial conditions, that is, there exists ε > 0 such that for
every δ > 0 there exists d((x , y), (0, 0)) < δ and k > 1 holding
d(G k(x , y)− G k(0, 0)) > ε.
Now we compute the distance to the maximum. Taking ε = 3/8, then for
every δ > 0 there exists (x , y) such that d((x , y), (0, 0)) < δ, that is,
x < δ, y < δ and k ≥ 2 it is hold that f k(x) < 1/2 or f k(y) < 1/2 and by
other hand we have f k(0) > 7/8. Therefore

d(G k(0, 0)− G k(x , y)) > ε

38 / 39



The previous construction for the two dimensional case on I 2 or
[0, 1)× [0, 1) = B can be extended to similar constructions on I n, Bn or
Tn using general versions of the permutation maps considered in a paper
from BL.
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