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When dealing with nonautonomous difference equations, it is well-known that
eigenvalues yield no information on the stability or hyperbolicity of linear sys-
tems. We therefore review several more appropriate spectral notions first.

Our particular focus is on the dichotomy spectrum (also called dynamical or Sacker-
Sell spectrum). It is a crucial notion in the theory of dynamical systems, since it
contains information on stability, as well as appropriate robustness properties.
However, recent applications in nonautonomous bifurcation theory showed that
a detailed insight into the fine structure of this spectral notion is necessary. On this
basis, we explore a helpful connection between the dichotomy spectrum and op-
erator theory. It relates the asymptotic behavior of linear nonautonomous differ-
ence equations to the point, surjectivity and Fredholm spectra of weighted shifts.
This link yields several dynamically meaningful subsets of the dichotomy spec-
trum, which not only allows to classify and detect bifurcations, but also simplifies
proofs for results on the long term behavior of difference equations with explicitly
time-dependent right-hand side.
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