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Given complex numbers αi, γi and δi, i = 0, ..., 2, consider the family of birational
maps f : C2 → C2 of the following form

f(x, y) =

(
α0 + α1x+ α2y,

γ0 + γ1x+ γ2y

δ0 + δ1x+ δ2y

)
. (1)

We consider the imbedding (x, y) 7→ (1, x1, x2) ∈ P2 into projective space and
consider the induced map F : P2 → P2 given by

F [x0, x1, x2] = [x0(δ · x), (α · x)(δ · x), x0(γ · x)],

where α · x = α0x0 + α1x1 + α2x2. To determine the behavior of iterates, F n =
F ◦ · · · ◦ F , we will study their degree growth rate particularly we are interested
in the quantity

D(α, γ, δ) = lim
n→∞

(deg(F n))
1
n ,

which is known as the dynamical degree in [1] and the logarithm of this quantity
has been called the algebraic entropy in [6] and [2].

In order to classify our family (1) we first make an identification of two ex-
isting cases in (1). For all the values of parameters for which the determinants
(γδ)12 and (αδ)12 are zero we call it a degenerate case and the values of param-
eters for which these determinants are non zero we say that the family (1)
lies in the non degenerate case. In general the family (1) has dynamical degree
D = 2. The main interest is to identify the possible subcases of (1) for all the



parameter values. By the help of the associated characteristic polynomial of each
subcase/subfamily we are able to know their growth rate. Therefore we find
the dynamical degree D for all the subcases in order to locate the subfamilies
with entropy zero and the ones where 1 < D < 2. The subfamilies with zero
entropy have rather simpler dynamics than the other subfamilies which have
non zero entropy. This talk will focus on providing information of all the existing
subcases/subfamilies of (1) in both above mentioned cases. Some families with
zero entropy will also be shown.
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