W-maps and harmonic averages

Paweł Góra

(in collaboration with Zhenyang Li, Abraham Boyarsky, Harald Proppe and Peyman Eslami)

Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada E-mail address: pgora@mathstat.concordia.ca URL: http://www.mathstat.concordia.ca/faculty/pgora

The W-map [1] is a transformation $\tau : [0, 1] \rightarrow [0, 1]$ with a graph in the shape of letter W. We assume that it is continuous, piecewise linear with four branches: τ_1 , τ_2 , τ_3 and τ_4 . The τ_1 and τ_3 are decreasing, the τ_2 and τ_4 increasing. The first and the last branches are onto, while the middle branches meet at point (1/2, 1/2), i.e., 1/2 is a turning fixed point of τ . The modulus of the slope of τ_i is $s_i > 1$, i = 1, 2, 3, 4, so τ is piecewise expanding and as such admits an absolutely continuous invariant measure (acim) μ . Let us consider a family of small perturbations τ_n of map τ , such that $\tau_n \rightarrow \tau$ as $n \rightarrow \infty$. Let τ_n have acim μ_n . If $\mu_n \rightarrow \mu$, we call τ "acimstable". It was shown in [1] that W-map with $s_2 = s_3 = 2$ is not acim-stable. It turns out that acim-stability of τ depends on $1/s_2 + 1/s_3 < 1$, then τ is acimstable. We prove this slightly improving the classical Lasota-Yorke inequality [2]. If $1/s_2 + 1/s_3 > 1$, then we can produce a family of τ_n 's such that $\mu_n \rightarrow \delta_{\{1/2\}}$ weakly. If $1/s_2 + 1/s_3 = 1$, then we can produce a family of τ_n 's exact on [0, 1] such that μ_n 's converge weakly to a combination of μ and $\delta_{\{1/2\}}$.

References

- [1] Keller, G., Stochastic stability in some chaotic dynamical systems, Monatshefte für Mathematik **94** (4) (1982) 313–333.
- [2] Eslami, P. and Góra, P., Stronger Lasota-Yorke inequality for piecewise monotonic transformations, preprint, available at http://www.peymaneslami.com/EslamiGora_Stronger_LY_Ineq.pdf