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We develop unifying graph theoretic techniques to study the dynamics and the
structure of the spaces H(X) and C(X), the space of homeomorphisms and
the space of continuous self-maps of the Cantor space X , respectively. Using
our methods, we give characterizations which determine when two homeomor-
phisms of the Cantor space are conjugate to each other. We also give a new char-
acterization of the comeager conjugacy class of the space H(X). The existence of
this class was established by Kechris and Rosendal in [9] and a specific element of
this class was described concretely by Akin, Glasner and Weiss in [1]. Our char-
acterization readily implies many old and new dynamical properties of elements
of this class. For example, we show that no element of this class has a Li-Yorke
pair, implying the well known Glasner-Weiss result [8] that there is a comeager
subset of H(X) each element of which has topological entropy zero. Our analo-
gous investigation in C(X) yields a surprising result: there is a comeager subset
of C(X) such that any two elements of this set are conjugate to each other by
an element of H(X). Our description of this class also yields many old and new
results concerning dynamics of a comeager subset of C(X).
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