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A fundamental quasisymmetry numerical invariant of a compact metric space X
is its conformal dimension dimAR X . It was introduced by P. Pansu in order to
classify, up to quasi-isometry, homogeneous spaces of negative curvature [3, 2].
Motivated by Sullivan’s dictionary [4, 1], which establishes a fundamental corre-
spondence between the properties of hyperbolic groups and of a particular class
of finite branched coverings, I will define this invariant in the context of rational
maps. I will show how to compute dimAR X using the critical exponent QM asso-
ciated to the combinatorial modulus, which is a discrete version of the conformal
modulus from complex analysis. Finally, I will apply this result to compute the
conformal dimension of the Julia sets of some hyperbolic rational maps.
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