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Clark’s equation, V. Jiménez López . . . . . . . . . . . . . . . . . . . . . 10

Periodic point free continuous self–maps on graphs and surfaces, Jaume
Llibre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Hyperbolicity in dissipative polygonal billiards, João Lopes Dias . . . . . . 12

Random homeomorphisms of an interval, Michał Misiurewicz . . . . . . . . 13

Translation arcs and Lyapunov stability in two dimensions, Rafael Ortega . 14

Discrete Dynamics and Spectral Theory, Christian Pötzsche . . . . . . . . . 15
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dition, Jakub Šotola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Transport Equation on Semidiscrete Domains, Petr Stehlı́k . . . . . . . . . 61

Dynamical Classification of a family of Birational Maps via Dynamical
Degree, Sundus Zafar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Special Session: Asymptotic Behavior and Periodicity of Dif-
ference Equations
Organizers: I. Győri and M. Pituk 65
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On Poincaré–Perron theorems for systems of linear difference equations,
Sigrun Bodine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Stability of difference equations with an infinite delay, Elena Braverman . . 69

Admissibility of linear stochastic discrete Volterra operators applied to
an affine stochastic convolution equation, John Daniels . . . . . . . . 70

Positive and oscillating solutions of discrete linear equations with delay,
J. Diblı́k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Asymptotic behavior and oscillation of fourth-order difference equa-
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Plenary Lectures

Mandelpinski Necklaces for Singularly Perturbed
Rational Maps

ROBERT L. DEVANEY

Department of Mathematics,
Boston University,

Boston, MA
USA

E-mail address: bob@bu.edu
URL: http://math.bu.edu/people/bob

In this lecture we consider rational maps of the form zn + C/zn where n > 2.
When C is small, the Julia sets for these maps are Cantor sets of circles and the
corresponding region in the C-plane (the parameter plane) is the McMullen do-
main. We shall show that the McMullen domain is surrounded by infinitely many
simple closed curves called Mandelpinski necklaces. The kth necklace contains ex-
actly (n − 2)nk + 1 parameters that are the centers of baby Mandelbrot sets and
the same number of parameters that are centers of Sierpinski holes, i.e., disks
in the parameter plane where the corresponding Julia sets are Sierpinski curves
(sets that are homeomorphic to the Sierpinski carpet fractal). We shall also briefly
describe other interesting structures in the parameter plane.
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Application of singularity theory to the global
dynamics of population models

SABER ELAYDI1, EDUARDO BALREIRA2, RAFAEL LUÍS3

1 Department of Mathematics, Trinity University, USA.
E-mail address: selaydi@trinity.edu
URL: http://ramanujan.math.trinity.edu/selaydi/
2 Department of Mathematics, Trinity University, USA.
3 Center of Mathematical Analysis, Geometry, and Dynamical Systems, Instituto Supe-
rior Tecnico, Technical University of Lisbon, Lisboa, Portugal.

The notion of critical curves of two dimensional maps has been around since its
introduction by Mira in 1964. The main objective there was to find an absorbing
region of the map. Using singularity theory of Hassler Whitney as well as some
topological and geometrical results, we will establish the mathematical founda-
tion of Mira’s results. The new established theory will be applied to competition
models to show that local stability implies global stability. Then we will put for-
ward a new conjecture which says that for proper excellent noninvertible maps
(Whitney) with invariant boundary, local stability implies global stability.

References

[1] Open problems in some competition models, Journal of Difference Equations
and Applications, Volume 17, No. 12 (2011), pp. 1873-1877 (with Luis).

[2] Stability of a Ricker-type competition model and the competitive exclusion
principle, Journal of Biological Dynamics, Vol. 5, No. 6 (2011), pp. 636-660
(with Luis and Oliveira).

[3] Bifurcation and Invariant Manifolds of the Logistic Competition Model, Jour-
nal of Difference Equations and Applications, Vol. 17, No. 12 (2011), pp. 1851-
1872 (with Guzowska and Luis).

[4] C. Mira, Chaotic Dynamics, World Scientific, Singapore, 1987.
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[5] H. Whitney, On singularities of mappings of Euclidean spaces, mapping of
the plane into itself, Annals of Math. 62(3), 1955, 374-410.
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Plenary Lectures

Different approaches to
the global periodicity problem

ARMENGOL GASULL

Departament de Matemàtiques, Universitat Autònoma de Barcelona,
08193–Bellaterra, Barcelona SPAIN

E-mail address: gasull@mat.uab.cat
URL: http://www.gsd.uab.cat/personal/agasull

Let F be a real or complex n-dimensional map. It is said that F is globally periodic
if there exists some p ∈ N+ such that F p(x) = x for all x for which F p is well
defined, where F k = F ◦ F k−1, k ≥ 2. The minimal p satisfying this property
is called the period of F. One problem of current interest is the following: Given
a m-dimensional parametric family of maps, say Fλ, determine all the values of
λ such that Fλ is globally periodic, together with their corresponding periods,
see for instance [1, 7, 10]. Perhaps the paradigmatic example is the 1-parameter
family of maps corresponding to the Lyness recurrences

Fλ(x, y) =
(
y,
λ+ y

x

)
,

for which the solution is well known. The globally periodic cases are F1 and F0

and the corresponding periods 5 and 6.

Some people of our research group approaches to the above problem from differ-
ent points of view. The aim of this talk is to show the techniques that we are using
and some of the results that we have obtained. More specifically we approach to
it using the following tools:

• Proving its equivalence with the complete integrability of the dynamical
system induced by the map F , see [3].

• Using the local linearization given by the Montgomery-Bochner Theorem
for characterizing the periodic cases in same families of maps, see [5, 6, 11].

• Using the theory of normal forms, see [4].
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• Using properties of the so called vanishing sums that are polynomial identi-
ties with integer coefficients involving only roots of the unity, see [2, 9].

We will pay special attention to the case where Fλ is a family of rational maps,
depending also rationally of the multiparameter λ. Other cases on which we will
concentrate are the maps of the form

F (x1, . . . , xk) = (x2, x3, . . . , xk, f(x1, x2, . . . , xk)) ,

that correspond to autonomous k-th order difference equations, and the maps
coming from non-autonomous periodic difference equations.

As an example of this last situation consider the 2-periodic Lyness recurrence

xn+2 =
an + xn+1

xn
, where an =

{
a for n = 2`+ 1,
b for n = 2`,

with λ = (a, b) ∈ C2. Studying the family of maps

Fa,b(x, y) =

(
a+ y

x
,
a+ bx+ y

xy

)
,

which describes its behavior, we prove that the only globally periodic recurrences
with a 6= b are given by a = a∗ := (−1 ± i

√
3)/2 and b = b∗ := a∗ = 1/a∗ and

are 10-periodic. In fact F 5
a∗, b∗ = Id . This result can also be obtained following the

approach developed in [12] that gives all the globally periodic QRT-maps, see
also [8].

References

[1] F. Balibrea and A. Linero. Some new results and open problems on periodicity of
difference equations, Iteration theory (ECIT ’04), 15–38, Grazer Math. Ber., 350,
Karl-Franzens-Univ. Graz, Graz, 2006.

[2] J. H. Conway and A. J. Jones. Trigonometric Diophantine equations (On vanishing
sums of roots of unity), Acta Arith. 30 (1976), 229–240.

[3] A. Cima, A. Gasull and V. Mañosa. Global periodicity and complete integrability
of discrete dynamical systems, J. Difference Equ. Appl. 12 (2006), 697–716.
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[4] A. Cima, A. Gasull and V. Mañosa. Global periodicity conditions for maps and
recurrences via normal forms. Preprint May 2012.

[5] A. Cima, A. Gasull and F. Mañosas. Global linearization of periodic difference
equations, Discrete Contin. Dyn. Syst. 32 (2012), 1575–1595.

[6] A. Cima, A. Gasull and F. Mañosas. Simple examples of planar involutions with
non-global montgomery-Bochner linearizations. To appear in Appl. Math. Lett.
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Homoclinic trajectories of non-autonomous maps

THORSTEN HÜLS

Department of Mathematics, Bielefeld University, POB 100131, D-33501 Bielefeld,
Germany

E-mail address: huels@math.uni-bielefeld.de
URL: http://www.math.uni-bielefeld.de/˜huels

For time-dependent dynamical systems of the form

xn+1 = fn(xn), n ∈ Z, (1)

homoclinic trajectories are the non-autonomous analog of homoclinic orbits from
the autonomous world, cf. [1]. More precisely, two trajectories (xn)n∈Z, (yn)n∈Z of
(1) are called homoclinic to each other, if

lim
n→±∞

‖xn − yn‖ = 0.

Two boundary value problems are introduced, the solution of which yield finite
approximations of these trajectories. Under certain hyperbolicity assumptions,
we prove existence, uniqueness and error estimates.

Extending these ideas, we also propose adequate notions for heteroclinic orbits
in non-autonomous systems, see [2].

The resulting algorithms and error estimates are illustrated by an example.

References

[1] Thorsten Hüls; Homoclinic trajectories of non-autonomous maps, J. Difference
Equ. Appl., 17(1):9–31, 2011.

[2] Thorsten Hüls and Yongkui Zou; On computing heteroclinic trajectories of non-
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It has been conjectured for Clark’s equation xn+1 = αxn + (1 − α)h(xn−k) that a
locally attracting fixed point is also globally attracting whenever h is a unimodal
or decreasing map with negative Schwarzian derivative [1, 2, 3, 4]. In this talk
we present some counterexamples to the conjecture when k ≥ 3. One such coun-
terexample is remarkably provided by Sheperd’s function

h(x) =
px

1 + xq

when the positive parameters p, q are appropriately chosen.

References

[1] H. A. El-Morshedy and E. Liz, Convergence to equilibria in discrete popula-
tion models, J. Difference Equ. Appl. 11 (2005), 117–131.

[2] I. Győri and S. Trofimchuk, Global attractivity and persistence in discrete pop-
ulation model, J. Differ. Equations Appl. 6 (2000), 647–665.

[3] E. Liz, Global stability and bifurcations in a delayed discrete population
model, Int. J. Qual. Theory Differ. Equ. Appl. 3 (2009), 66–80.

[4] C. Wang y J. Wei, Bifurcation analysis on a discrete model of Nicholson’s
blowflies, J. Difference Equ. Appl. 14 (2008), 737–746.
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E-mail address: jllibre@mat.uab.cat

Let M be either a connected compact graph, or a connected compact surface with
or without boundary, orientable or not.

Using the action on the homology of a continuous map, we characterize the con-
tinuous maps f : M → M without periodic points, i.e. the so called periodic point
free continuous self–maps of M.

This talk will be based on the article [1].

References

[1] J. Llibre, Periodic point free continuous self–maps on graphs and surfaces, to appear
in Topology and its Applications.
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A billiard is a mechanical system consisting of a point-particle moving freely in-
side a planar region and being reflected off the perimeter of the region according
to some reflection law. The specular reflection law is the familiar rule that pre-
scribes the equality of the angles of incidence and reflection. Billiards with this
reflection law are conservative systems, and as such are models for physical sys-
tems with elastic collisions. For this reason and their intrinsic mathematical inter-
est, conservative billiards have been extensively studied. Much less studied are
dissipative billiards, which originate from reflection laws requiring that the an-
gle of reflection is a contraction of the angle of incidence. These billiards do not
preserve the Liouville measure, and therefore can model physical systems with
non-elastic collisions. We will present the case of polygonal billiard tables, whose
dynamics differs strikingly from the one of its conservative counterparts. Joint
work with G. del Magno, P. Duarte, J. P. Gaivão and D. Pinheiro.

12

jldias@iseg.utl.pt
http://www.iseg.utl.pt/~jldias


Plenary Lectures

Random homeomorphisms of an interval
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We investigate homeomorphisms of a compact interval, applied randomly. We
consider this system as a skew product with the two-sided Bernoulli shift in the
base. If on the open interval there is a metric in which almost all maps are contrac-
tions, then (with mild additional assumptions) there exists a global pullback at-
tractor, which is a graph of a function from the base to the fiber. It is also a forward
attractor. However, the value of this function depends only on the past, so when
we take the one-sided shift in the base, it disappears. We illustrate those phenom-
ena on an example, where there are two piecewise linear homeomorphisms, one
moving points to the right and the other one to the left.
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Given a closed orbit γ of a system of differential equations in the plane

ẋ = X(x), x ∈ R2,

the index of the vector field X around γ is one. This classical result has a counter-
part in the theory of discrete systems in the plane. Consider the equation

xn+1 = h(xn), xn ∈ R2,

where h is an orientation-preserving homeomorphism and assume that there is a
recurrent orbit that is not a fixed point. Then there exists a Jordan curve γ such
that the fixed point index of h around this curve is one. The proof is based on the
theory of translation arcs, initiated by Brouwer. This talk is dedicated to discuss
some consequences of the above result, specially in stability theory. We will com-
pute the indexes associated to a stable invariant object and show that Lyapunov
stability implies persistence (in two dimensions). The invariant sets under con-
sideration will be fixed points, periodic orbits and Cantor sets. The more recent
results on Cantor sets are joint work with Alfonso Ruiz-Herrera.

14

rortega@ugr.es
http://www.ugr.es/~ecuadif/fuentenueva.htm


Plenary Lectures
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Universitätsstraße 65–67

9020 Klagenfurt
Austria

URL: http://www.uni-klu.ac.at/˜cpoetzsc

When dealing with nonautonomous difference equations, it is well-known that
eigenvalues yield no information on the stability or hyperbolicity of linear sys-
tems. We therefore review several more appropriate spectral notions first.

Our particular focus is on the dichotomy spectrum (also called dynamical or Sacker-
Sell spectrum). It is a crucial notion in the theory of dynamical systems, since it
contains information on stability, as well as appropriate robustness properties.
However, recent applications in nonautonomous bifurcation theory showed that
a detailed insight into the fine structure of this spectral notion is necessary. On this
basis, we explore a helpful connection between the dichotomy spectrum and op-
erator theory. It relates the asymptotic behavior of linear nonautonomous differ-
ence equations to the point, surjectivity and Fredholm spectra of weighted shifts.
This link yields several dynamically meaningful subsets of the dichotomy spec-
trum, which not only allows to classify and detect bifurcations, but also simplifies
proofs for results on the long term behavior of difference equations with explicitly
time-dependent right-hand side.
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A fundamental problem in evolutionary game theory is to explain how coopera-
tion can emerge in a population of self-interested individuals as typically occurs
in the prisoner dilemma. Axelrod attributes the reason of emergence of coopera-
tion to the shadow of the future: the likelihood and importance of future interac-
tion.

Since Axelrod, one approach to test the efficiency or robustness of a strategy and
further to derive optimal strategies is the evolutionary dynamics (a processes
where individuals with low scores die and those with high scores flourish).

A natural question is which strategies or type of strategies are selected by the
dynamics equations; in other words, which are the natural attractors and which
type of strategies are uniformly selected independently of the strategy set.

We will show that in the context of the evolutionary dynamics associated to the
prisoner dilemma, it is possible to identify strategies with uniform local basin of
attraction independent of any initial population (provided that “the shadow of
the future’ is relevant and “mistakes are allowed’). It also proved, as was conjec-
tured by Axelrod, that those strategies are “ nice, retaliating, and forgiving”.
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We will investigate a two-parameter family of maps of the circle into itself, which
we call Double Standard Maps. They are non-invertible analogues of the famous
Arnold Standard Maps. I will present some features of this family and analyze
the behaviour of their iterates.
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– old and new results

L’UBOMÍR SNOHA
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The notion of the functional envelope of a dynamical system was introduced by
J. Auslander, S. Kolyada and the speaker in 2007. They were inspired mainly by
the previous works of A. N. Sharkovsky and his collaborators, and by the notion
of the density index of a topological semigroup.

If (X, f) is a dynamical system given by a compact metric space X and a conti-
nuous map f : X → X , then the functional envelope of (X, f) is the dynamical
system (S(X), Ff ) whose phase space S(X) is the space of all continuous self-
maps of X and the map Ff : S(X) → S(X) is defined by Ff (ϕ) = f ◦ ϕ for any
ϕ ∈ S(X).

In the first part of the talk we will recall the most interesting facts known on the
dynamics of functional envelopes. Then we will speak on recent results due to
T. Das, E. Shah and the speaker.
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Monotone and slowly oscillating wavefronts of the
KPP-Fisher differential-difference equation

SERGEI TROFIMCHUK

(in collaboration with Adrian Gomez and Karel Hasik)

Instituto de Matemática y Fı́sica,
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We present recent results on traveling fronts (i.e. positive heteroclinic solutions)
for the Kolmogorov-Petrovskii-Piskunov-Fisher differential-difference equation.
We discuss such aspects as the existence, uniqueness, approximation, monotoni -
city and oscillatory properties of the traveling fronts. In the ‘non-monotone’ part
of the work, our approach is based on the construction and subsequent analysis of
some auxiliary one-dimensional maps possessing the negative Schwarz deriva-
tive. This connects the problem of the existence of traveling fronts to the famous
Wright’s 3/2-stability theorem and Wright’s global stability conjecture.
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Global Dynamics for Symmetric Planar Maps
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We consider sufficient conditions to determine the global dynamics for equivari-
ant maps of the plane with a unique fixed point which is also hyperbolic. When
the map is equivariant under the action of a compact Lie group, it is possible to
describe the local dynamics and – from this – also the global dynamics. In partic-
ular, if the group contains a reflection, there is a line invariant by the map. This
allows us to use results based on the theory of free homeomorphisms to describe
the global dynamical behaviour. In the absence of reflections, we use equivariant
examples to show that global dynamics may not follow from local dynamics near
the unique fixed point. This talk is based on the papers [1] and [2].
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On the Second Order Rational Difference Equation
xn+1 = β + 1

xnxn−1
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The author investigates the local and global stability character, the periodic na-
ture, and the boundedness of solutions of one of the second-order rational differ-
ence equation in form

xn+1 = β +
1

xnxn−1
, n = 0, 1, ..., (1)

with parameter β and with arbitrary initial conditions such that the denominator
is always positive. In the paper [1] are given several open problems and conjec-
tures about these equations:
Conjecture 8.1. Every positive solution of (1) has a finite limit.
Open Problem 8.2. Assume that β is a real number. Determine the set G of real
initial values x−1, x0 for which the equation (1) is well defined for all n ≥ 0, and
investigate the character of solutions of (1) with x−1, x0 ∈ G.

In this talk the author would like to pose some ideas how to solve these problems.

References
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*This work is partially supported by the project of European Social Fund ”Support for doctoral
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Initial Condition Problems for Second Order
Rational Difference Equations
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Often initial conditions of difference equations have a great influence on existence
and behavior of solution. We investigate the initial value effect on the behavior of
solutions of second order rational difference equations, for example, in [1, Open
Problem 2.9.4]. is as follows: It is known that all solutions of difference equations

xn+1 =
1 + xn−1
1 + xn

and xn+1 = 1 +
xn−1
xn

, n = 0, 1, 2, . . . (1)

converges to a solution with period two: . . . , φ, ψ, φ, ψ, . . . . Determine φ and ψ
in terms of the initial conditions x−1 and x0. Although the given equations seem
very simple, however it is very complicated even to calculate numerically some
terms of the solution sequence (for example, if we take first equation and initial
values x−1 = x0 = 2 we get a solution sequence: 2; 2; 1; 3

2
; 4
5
; 25
18

; 162
215

; 9245
6786

; . . . ).

Other problems connected with initial values are problems where the set of all
initial points (x−1, x0) ∈ R × R through which the given equation is well defined
for all n ≥ 0 has to be gained.

On the basis of obtained results and computational experiments some ideas about
initial value problems will be discussed.
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This article studies the boundedness property of the solutions of nonlinear
Volterra difference equations with time delays.

The most important result of this paper is a simple new criterion, which unifies
and extends several earlier results (see [1, 2, 3]). We show some results on the
critical case for the solutions of Volterra difference equations with time delay to
be bounded. Examples are also given to illustrate our main theorems.

It is a joint work with Prof. István Győri and Prof. Ferenc Hartung, Depart-
ment of Mathematics, Faculty of Information Technology, University of Pannonia,
Veszprém, Hungary.
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It is well known that the family of Lozi maps plays a key role in our understand-
ing of plane dynamics. Being a two-parameter piecewise linear plane family of
maps, therefore a very simple framework to study and understand dynamics on
the plane, they are also close to the one-parameter family of tent maps of the
interval. Thus, in principle, it seems that we have the chance to study why cer-
tain results known for one-dimension dynamics are not true when the dimension
of the phase space is larger than one. With this work, we study the relationship
between kneading sequences of tent maps, the topological symbolic invariants in-
troduced by Milnor and Thurston, [2], for modal maps of the interval, with Lozi
maps kneading sequences, introduced by Yutaka Ishii [3]. Building on the notion
of kneading curves on the parameter space, introduced in [1], we characterize the
structure of these curves for finite, periodic and aperiodic unimodal kneading
sequences. Our results show that there is some strong connection between Lozi
dynamics and the dynamics of tent maps.

References
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Algebraic Signal Sampling, an active area of research in Signal Processing, aims at
reconstructing an unknown finite-parametric model from a finite number of mea-
surements such as power moments or Fourier coefficients ([2, 3, 4, 6, 7] and refer-
ences therein). In many cases under consideration, the measurement sequence
is P-recursive ([11]), so that the reconstruction process essentially amounts to
recovery of the unknown coefficients of the corresponding recurrence relation.
Important practical questions such as conditions for unique reconstruction and
accuracy (stability) of solutions are directly expressible in the language of these
recurrences, their perturbations and the corresponding algebraic systems [1] (so-
called ”Prony-type” - [8, 9]).

Continuing our previous work [2] on moment inversion for piecewise D-finite
([10]) functions, we have recently obtained a non-trivial upper bound on the num-
ber of measurements needed for unique reconstruction in terms of the ODE itself
in some “singular” cases. The particular structure of the corresponding finite dif-
ference operator played a major role in the proof.

In addition to the above result and related questions, we will also discuss recon-
struction of certain 2D domains and the corresponding recurrences [5].
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In this talk we consider deterministic movement on graphs, integrating local in-
formation, memory and choice at nodes. The research is motivated by recent
work on deterministic random walks and applications in multi-agent systems.
Several results regarding passing messages through toroidal grids are discussed,
as well as some open questions.
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We investigate the periodic nature of solutions of a rational difference equation

xn+1 =
α

(1 + xn)xn−1
. (1)

Classically rational difference equations are explored with nonnegative param-
eters and nonnegative initial conditions. We show that the rational difference
equation (1) with negative initial conditions or/and with negative parameter α
have different behaviour from equations with nonnegative parameters and with
nonnegative initial conditions.

We explore [1, Open Problem 3.3] that requires to determine all periodic solutions
of equation (1). We can assert that, for example, for difference equation (1) with
parameter α > 0 does not exist initial conditions x−1 > 0 and x0 > 0 such that
solution of equation (1) is periodic with prime period 5 but if α < 0, then exist
initial conditions x−1 = x0 > 0 such that solution of equation (1) is periodic with
prime period 5 (for example, α = −4

3
and x−1 = x0 = 1). Period 7 is first period

for which exists nonnegative parameter α and nonnegative initial conditions (for
example, α ≈ 1, 053218 and x−1 = 5, x0 = 2).
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We consider Liénard polynomial systems. There are many examples in the natu-
ral sciences and technology in which Liénard systems are applied. They are often
used to model either mechanical or electrical, or biomedical systems, and in the
literature, many systems are transformed into Liénard type to aid in the investi-
gations. They can be used, e. g., in certain mechanical systems, when modeling
wind rock phenomena and surge in jet engines. Such systems can be also used
to model resistor-inductor-capacitor circuits with non-linear circuit elements. Re-
cently a Liénard system has been shown to describe the operation of an optoelec-
tronics circuit that uses a resonant tunnelling diode to drive a laser diode to make
an optoelectronic voltage controlled oscillator. There are also some examples of
using Liénard type systems in ecology and epidemiology.

In this talk, we discuss the general Liénard polynomial system with an arbitrary
(but finite) number of singular points in the form

ẋ = y, ẏ = −x (1 + β1 x+ . . .+ β2l x
2l) + y (α0 + α1 x+ . . .+ α2k x

2k). (1)

Applying a canonical system with field rotation parameters,

ẋ = y,

ẏ = −x (1 + β1 x± x2 + . . .+ β2l−1 x
2l−1 ± x2l)

+ y (α0 + x+ α2 x
2 + . . .+ x2k−1 + α2k x

2k),

(2)

where β1, β3, . . . , β2l−1 are fixed and α0, α2, . . . , α2k are field rotation parame-
ters, and using geometric properties of the spirals filling the interior and exterior
domains of limit cycles, we carry out the global bifurcation analysis of (2) and
prove the following theorem.

Theorem. The general Liénard polynomial system (1) can have at most k+ l limit cycles,
k surrounding the origin and l surrounding one by one the other its singularities.
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We study a Volterra difference equation of the form x(n+ 1) = a(n) + b(n)x(n) +

c(n)x(n − 1) +
n∑
i=0

K(n, i)x(i) where n ∈ Z, a, b, c, x : Z → R and K : Z × Z →

R. For every admissible constant c∗ ∈ R, sufficient conditions for the existence
of a solution x = x(n) of the above equation such that x(n) ∼ c∗nβ(n), where

β(n) = 1
2n

n−1∏
j=0

b(j) are presented. Next, sufficient conditions for the existence of an

eventually positive, oscillatory, and quickly oscillatory solution of this equation
are obtained, as a corollary of the main result. Finally, a conditions under which
considered equation possesses an asymptotically periodic solution are given.
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We are interested in time evolution of systems that can and do switch their modes
(regimes) of operation at discrete moments of time. The intervals between switch-
ing may, in general, vary. The number of modes (regimes) may be finite or infinite.
Such systems are very common in life. Every living organism is like that. In pa-
pers [1], [2], [3] we have developed a theory that models such systems and call
it dynamics with choice (DWC). We have studied the long term behavior and, in
particular, the existence and properties of global compact attractors in DWC. In
this paper, we define and study a continuous time dynamics whose trajectories
are limits of trajectories of discrete DWC as time step goes to zero. Under certain
conditions we are able to prove the semi-group property for the continuous limit,
and we study such semi-dynamical systems. In a special case of a switched sys-
tem, i.e., when the DWC is generated by switching between solutions of a finite
number of systems of ODEs, we show that the reachable set in the continuous
limit DWC coincides with the reachable set of a certain differential inclusion.
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The W-map [1] is a transformation τ : [0, 1] → [0, 1] with a graph in the shape of
letter W. We assume that it is continuous, piecewise linear with four branches: τ1,
τ2, τ3 and τ4. The τ1 and τ3 are decreasing, the τ2 and τ4 increasing. The first and the
last branches are onto, while the middle branches meet at point (1/2, 1/2), i.e., 1/2
is a turning fixed point of τ . The modulus of the slope of τi is si > 1, i = 1, 2, 3, 4, so
τ is piecewise expanding and as such admits an absolutely continuous invariant
measure (acim) µ. Let us consider a family of small perturbations τn of map τ ,
such that τn → τ as n → ∞. Let τn have acim µn. If µn → µ, we call τ ”acim-
stable”. It was shown in [1] that W-map with s2 = s3 = 2 is not acim-stable.
It turns out that acim-stability of τ depends on 1/s2 + 1/s3 which is related to
harmonic average of s2 and s3 equal 2

1/s2+1/s3
. If 1/s2 + 1/s3 < 1, then τ is acim-

stable. We prove this slightly improving the classical Lasota-Yorke inequality [2].
If 1/s2 + 1/s3 > 1, then we can produce a family of τn’s such that µn → δ{1/2}
weakly. If 1/s2 +1/s3 = 1, then we can produce a family of τn’s exact on [0, 1] such
that µn’s converge weakly to a combination of µ and δ{1/2}.
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In his recent review, Schreiber [1] describes the state of the art for stochastic com-
petition models of the general form

X i
t+1 = fi(Xt, ξt)X

i
t , i = 1, . . . k, t = 0, 1, 2, . . .

where the state space S is a subset of <k+ and the union of the coordinate axes in
<k+ forms the extinction set S0; the ξ’s represent a randomly evolving environment.

I will look at some variants and special cases of this model. Specifically, we will
limit ourselves to two populations, k = 2, and the functions fi are chosen to be of
the Ricker type:

exp(rit −Ki
t(X

i
t + αjXj

t )), i, j = 1, 2, i 6= j.

Here the rit’s model the average intrinsic per capita rate of growth of population
i at time t. The growth is attenuated by the negative term where Ki

t describes
the intra-specific competition at time t and αj (assumed constant over time) the
relative importance of the inter-specific competition.

Another variant of the model is concerned with demographic stochasticity. Here
our aim is to study the evolution of two finite populations as size-dependent
branching processes, which on average follow the above Ricker-type model, with
non-random ri, Ki. We want to describe the long-term behavior and compare it
with that of the corresponing deterministic model. The size-dependent branching
processes will necessarily have finite life-times. Can anything be said about these?
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We give some general results about global dynamics of an anti-competitive sys-
tem of the form {

xn+1 = T1(xn, yn)
yn+1 = T2(xn, yn)

, n = 0, 1, 2, . . .

where
T1 : I × J → I, T2 : I × J → J and (x0, y0) ∈ I × J ,

and functions T1 and T2 are continuous and T1(x, y) is non-increasing in x and
non-decreasing in y while T2(x, y) is non-decreasing in x and non-increasing in
y. We illustrate our results by means of an example which shows wide variety of
typical dynamical behavior for an anti-competitive system.
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Grouping vehicles into platoons is a method of increasing the capacity of roads.
Platoons decrease the distances between vehicles using electronic, and possibly
mechanical, coupling. The automated highway system is a proposal for one such
system, where cars organize themselves into platoons.

The key-point of the vehicle platoon is to adequately control the vehicle velocity.
The velocity control model is defined as the ordinary differential equation of the
information from the nearest leader vehicle (the distance or the velocity). In this
study, the platoon of five vehicles is considered as the example. Each follower
vehicle has one, two, three or four leader vehicles. The velocity control model
of the follower vehicle is defined so that the velocity depends on the velocity of
the all leader vehicles[1, 2]. It is considered as the steady state that all vehicles
move at identical velocity. Model stability analysis around the steady state gives
the stable condition of the sensitivities from a vehicle to its leader vehicles. In this
study, maximization of the sensitivities revels that the vehicle velocity depends
only on the nearest leader and the lead vehicles of the platoon. Finally, traffic
simulations of the vehicles platoon are shown in order to discuss the validity of
the model.
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Discrete-time discrete-state random Markov chains with a tridiagonal generator
are shown to have a random attractor consisting of singleton subsets, essentially
a random path, in the simplex of probability vectors. The proof uses the Hilbert
projection metric and the fact that the linear cocycle generated by the Markov
chain is a uniformly contractive mapping of the positive cone into itself. The proof
does not involve probabilistic properties of the sample path and is thus equally
valid in the nonautonomous deterministic context of Markov chains with, say,
periodically varying transitions probabilities, in which case the attractor is a pe-
riodic path.
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This is a joint work with Prof. Zuzana Došlá. We consider the nonlinear difference
equation

∆
(
an

(
∆bn (∆cn (∆xn)γ)

β
)α)

+ dnx
λ
n+τ = 0,

where α, β, γ, λ are the ratios of odd positive integers, τ ∈ Z and {an}, {bn},
{cn}, {dn} are positive real sequences defined for all n ∈ N.
We state new oscillation theorems and we complete the existing results in the lit-
erature. Our approach is based on considering our equation as a system of the
four-dimensional difference system and on the cyclic permutation of the coeffi-
cients in the difference equations.
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We investigate the global stability, periodic character, and the boundedness na-
ture of the solutions of several special cases which are contained in the difference
equation

xn+1 =
αn + βnxnxn−1 + γnxn−1
An +Bnxnxn−1 + Cnxn−1

, n = 0, 1, . . .

where the parameters αn, βn, γn, An, Bn, Cn are nonnegative periodic sequences,
and the initial conditions x−1, x0 are nonnegative real numbers, such that the de-
nominators are always positive.
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We consider synchronization phenomena of chaotic discrete dynamical systems
with unidirectional and bidirectional coupling mechanisms. It is studied a non-
linear coupling scheme that appears in natural a family of analytic complex
quadratic maps (Isaeva et al. [1]). It is an asymmetric coupling between two real
quadratic maps in which we use different values of the control parameters cho-
sen in the region of chaos. The map obtained by coupling two chaotic quadratic
maps exhibits a richer dynamics that the single one, but it is still possible to study
its behaviour. We are not aware about any studies of this type of coupling. When
practical synchronization (in the Kapitaniak sense) is not achieved, but the dif-
ference between the dynamical variables of the systems is bounded, we still can
apply to the coupled system a chaos control technique based on the well-know
OGY-method [2] (Ott-Grebogy-Yorke), the pole-placement control technique, de-
veloped by Romeiras et al. [3], in order to decrease the difference between the dy-
namical variables. Moreover, we obtain stable identical and generalized synchro-
nization with some versions of the original coupling, highlighting the absence
of symmetry. Two of them are generalizations promoting the use of different pa-
rameters coupling. By analyzing the difference between the dynamical variables
of the systems, we obtain some results leading to stable synchronization. In case
of coupling with two different coupling parameters, the linear stability of the
synchronous state is ensured when some relations are guaranteed between the
coupling parameters and the initial conditions.
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De Moivre considered power series F (z) = f(0) + f(1)z + . . .+ f(k)zk + . . . with
recursive constant coefficients {f(n)}n=0,1,2,... satisfying a difference equation of
the form

f(x+m) = c1f(x+m− 1) + . . .+ cif(x+m− i) + . . .+ cmf(x), 0 ≤ i ≤ m

with some constant coefficients ci ∈ C. In 1722 he proved that the power series
F (z) are rational functions (see [1]).

Let C be a finite subset of the positive octant Zn+ of the integer lattice Zn such
that, for some m = (m1,m2, . . . ,mn) ∈ C, α1 6 m1, . . . , αn 6 mn holds for every
α = (α1, . . . , αn) ∈ C. The Cauchy problem consists in finding the solution f(x)
of the difference equation (we use a multidimensional notation)∑

α∈C

cαf(x+ α) = 0, (1)

which coincides with the some given function ϕ : Xm → C on the set Xm =
Zn+ \

(
m+ Zn+

)
.

The aim of this talk is to find the generating function of the solution of the Cauchy
problem for a multidimensional difference equation with constant coefficients of
the above form. Namely, under certain restrictions on the difference equation we
establish the dependence between the generating function of the initial data Φ(z)
and the generation function F (z) of the solutions to the Cauchy problem of the
difference equation under study, where

Φ(z) =
∑
x∈Xm

ϕ(x)

zx+1
and F (z) =

∑
x∈Zn+

f(x)

zx+1
.
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As a consequence, we prove that the GF of the solution to the difference equation
is rational if and only if the GF of the initial data is rational (see [2, 3]).

These results are used to solve certain problems in enumerative combinatorial
analysis.
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Discrete-time dynamical systems driven by periodic and random inputs arise as
models in many areas such as population biology, epidemiology, neural networks
etc.. We consider periodic difference equations and random difference equations
which arise respectively when the driving sequence acting as an input is periodic
and when as a stationary stochastic process. Among the fundamental entities in
understanding the asymptotic behavior of such systems are nonautonomous at-
tractors like pullback, forward and uniform attractors [1].

A difficulty some of the nonautonomous attractors pose is that their existence
is unknown. We present some results on the existence of a notion of uniform
attractivity for random difference equations on a compact space. In particular,
with a typical path-wise consideration, we define certain autonomous attracting
sets and show that each such set contains a local positively-invariant uniform
attractor. In the case of periodic difference equations we relate the existence of a
globally asymptotically stable periodic solution to nonautonomous attractors and also
to what is known as the echo state property of a driven system [2].

References

[1] Peter Kloeden and Martin Rasmussen, Nonautonomous Dynamical Systems,
American Mathematical Society, Providence, 2011.

[2] Herbert Jaeger, The “echo state” approach to analysing and training recurrent neu-
ral networks, GMD Report 148, GMD - German National Research Institute for
Computer Science, 2001.

48

mgandhi@jacobs-university.de
h.jaeger@jacobs-university.de


Communications

On periodic solutions of 2–periodic Lyness
difference equations
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We study the existence of periodic solutions of the non–autonomous periodic Lyness’
recurrence

un+2 =
an + un+1

un
, (1)

where {an}n is a cycle with positive values a,b and with positive initial conditions.

It is known that for a = b = 1 all the sequences generated by this recurrence are
5–periodic. Among other results concerning periodic solutions, we prove:

Proposition Consider the 2–periodic Lyness’ recurrence (1) for a > 0, b > 0 and positive
initial conditions u1 and u2.
(i) If (a, b) 6= (1, 1), then there exists a computable value p0(a, b) ∈ N such that for
any p > p0(a, b) there exist continua of initial conditions giving rise to 2p–periodic
sequences.
(ii) The set of prime periods arising when (a, b) ∈ (0,∞)2 and positive initial conditions
are considered, contains all the even numbers except 4, 6, 8, 12 and 20. If a 6= b, then it
does not appear any odd period, except 1.
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Combining the properties of the algebraic theory with the theory of the quadratic
map in the real and complex cases, we explore the properties of the non-
commuting cycles arising from the iteration in matrix algebras, under the action
of quadratic maps with matrix parameter. The stability domains in the subalgebra
where the dynamics occurs is also studied.
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Existence, uniqueness and attractivity of prime
period two solution for a difference equation

of exponential form
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In [1] the authors studied the existence of the equilibrium and the boundedness
of solutions of the difference equation

xn+1 = a+ bxn−1e
−xn (1)

where a, b are positive constants and the initial values x−1, x0 are positive num-
bers. Moreover the authors gave a conjecture concerning the existence, the
uniqueness and the attractivity of prime period two solution.

In this paper we give an answer concerning the existence and the uniqueness of
a prime period two solution for the equation (1). Moreover we find solutions of
(1) which converge to the unique periodic solution of period two.

Equation (1) may have applications in Biology if we consider a as the immigration
rate and b as the population growth rate.
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Asymptotics for second-order linear
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We will work on the q-uniform lattice qN0 := {qk : k ∈ N0}with q > 1 or, possibly,
on qZ. We will introduce the class of functions satisfying the relation

y(qt)/y(t) ∼ ω(t) as t→∞,

where ω is a nonzero function. We will study its properties and show how
this class is related e.g. to the class of q-regularly functions or to the class of
q-hypergeometric functions. Then we will consider the second-order linear q-
difference equation

y(q2t) + a(t)y(qt) + b(t)y(t) = 0,

where b(t) 6= 0 and a(t) are real functions. Sufficient and necessary conditions will
be presented for this equation to have solutions in the above mentioned class.
Related results concerning estimates for solutions and (non)oscillation of all so-
lutions will also be discussed.
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Decoupling and simplifying of difference equations
in the neighbourhood of invariant manifold
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and University of Latvia, Zeļļu iela 8, Rı̄ga LV-1459, Latvia
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We consider systems of nonautonomous difference equations in Banach space.
For these systems, sufficient conditions under which there is an local Lipschitzian
invariant manifold are obtained. Using this result and nonexponential Green type
maps we find sufficient conditions of partial decoupling and simplifying for sys-
tems of invertible and noninvertible difference equations.

*This work was partially supported by the grant 09.1220 of the Latvian Council of Science and
by ESF research project 2009/0223/1DP/1.1.1.2.0 /09/APIA/VIAA/008.
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Chaotic models stabilized by stochastic perturbations
with nonzero expectation
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2 St Mary’s University College and Athabasca University, Calgary, Canada.
E-mail address: leonid.braverman@stmu.ca;leonidb@athabascau.ca

A map which experiences a period doubling route to chaos, under a stochastic
perturbation with a positive mean, can have a stable blurred 2-cycle for large
enough values of the parameter. The limit dynamics of this cycle is described. It
was shown that well-known population dynamics models, like Ricker, truncated
logistic, Hassel and May, and Bellows maps, have this stable blurred 2-cycle and
belong to one of the three described types. In addition, there may be a blurred
stable area near the equilibrium.
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Chaos in discrete structured population models
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E-mail address: eliz@dma.uvigo.es
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We prove analytically the existence of chaotic dynamics in some classical discrete-
time age-structured population models. Our approach allows us to estimate the
sensitive dependence on the initial conditions, regions of initial data with chaotic
behavior, and explicit ranges of parameters where the considered models display
chaos. These properties have important implications to evaluate the influence of
a chaotic regime in the predictions based on mathematical models. We illustrate
through particular examples how to apply our results.
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On the dynamics of two exponential type systems
of difference equations
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In this paper we investigate the boundedness and the persistence of the positive
solutions, the existence of a unique positive equilibrium and the global asymp-
totic stability of the equilibrium of the following systems of difference equations

xn+1 = a+ byn−1e
−xn , yn+1 = c+ dxn−1e

−yn , (1)

xn+1 = a+ byn−1e
−yn , yn+1 = c+ dxn−1e

−xn , (2)

where the constants a, b, c, d are positive real numbers and the initial values
x−1, x0, y−1, y0 are also positive real numbers. We note that if x−1 = y−1, x0 = y0
then xn = yn, for all n = −1, 0, ... and so both systems reduce to the difference
equation xn+1 = α + βxn−1e

−xn which has been studied in [1]. System (2) repre-
sents the rule by which two discrete, competing populations reproduce from one
generation to the next. Variables xn, and yy, denote population sizes during the n-
th generation and the sequence or orbit (xn, yn), n = 0, 1, 2, ... describes how the
populations evolve over time.
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Existence of a bounded solution of Volterra difference
equations via Darbo’s fixed point theorem
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We study linear Volterra difference equation of nonconvolution type on the form

x(n+ 1) = a(n) + b(n)x(n) +
n∑
i=0

K(n, i)x(i),

where x : N→ R, a : N→ R,K : N×N→ R and b : N→ R. Sufficient conditions for
an existence of bounded solution of this equation are presented. Using this result,
an asymptotic equivalence of a solution and of the given sequence, dependent on
terms of sequence b, is obtained.
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Oscillation theory of discrete symplectic systems with
nonlinear dependence on the spectral parameter
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Symplectic systems represent a discrete time analogue of the linear Hamiltonian
systems. They contain as special cases many important difference equations and
systems, namely the Sturm–Liouville difference equations, symmetric three-term
recurrence equations, Jacobi difference equations, and linear Hamiltonian differ-
ence systems. Following our recent work in [3] and [2], we introduce a new theory
of discrete symplectic systems, in which the dependence on the spectral param-
eter is nonlinear. This requires to develop new definitions of (finite) eigenvalues
and (finite) eigenfunctions and their multiplicities for such systems. Our main re-
sults include the corresponding oscillation theorems, which relate the number of
(finite) eigenvalues with the number of focal points of the principal solution in
the given discrete interval. The present theory generalizes several known results
for discrete symplectic systems which depend linearly on the spectral parameter,
such as in [1]. We also show that our results are new even for the above mentioned
special discrete symplectic systems.
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An answer to some problems on self-similar sets and
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The subject of this talk are self-similar sets (a self-similar set E is a fixed point
of map ϕ(E) = ∪ϕi(E), where ϕi are contractive similitudes on Rn, see [3]), es-
pecially those satisfying the so-called open set condition (OSC). These sets have
many ”nice” properties, but they are still raising many questions too.

The OSC requires existence of an open set G, such that

ϕ(G) ⊂ G and ϕi(G) ∩ ϕj(G) = ∅.
Such a set G is called a feasible set.

In the talk I will consider some open problems formulated by L. Feng and Z. Zhou
in their papers [1] and [2]. Namely I will present a counterexample to the exis-
tence of connected (or even convex) feasible sets and i will prove that, if the self-
similar set satisfies OSC, the fixed points of maps ϕi must be distinct for different
indeces.
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Department of Matematics,
University of West Bohemia,

31200 Pilsen,
Czech Republic

E-mail address: pstehlik@kma.zcu.cz
URL: http://www.kma.zcu.cz/pstehlik

In this talk, we analyze the transport equation on semidiscrete domains. We
consider discrete, discrete-continuous and discrete-time scale domains. We dis-
cuss its relationship with nonlinear hyperbolic problems and corresponding sub-
jects from numerical analysis (semidiscrete methods, conservation laws, . . . ).
Analysing integral and sign conservation, we disclose an interesting relation-
ship of the transport equation with counting stochastic processes (Poisson and
Bernoulli processes) and the corresponding probability distributions. Conse-
quently, we mention possible application of the transport equation as a generator
of mixed probability distributions.
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Maps via Dynamical Degree
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Given complex numbers αi, γi and δi, i = 0, ..., 2, consider the family of birational
maps f : C2 → C2 of the following form

f(x, y) =

(
α0 + α1x+ α2y,

γ0 + γ1x+ γ2y

δ0 + δ1x+ δ2y

)
. (1)

We consider the imbedding (x, y) 7→ (1, x1, x2) ∈ P2 into projective space and
consider the induced map F : P2 → P2 given by

F [x0, x1, x2] = [x0(δ · x), (α · x)(δ · x), x0(γ · x)],

where α · x = α0x0 + α1x1 + α2x2. To determine the behavior of iterates, F n =
F ◦ · · · ◦ F , we will study their degree growth rate particularly we are interested
in the quantity

D(α, γ, δ) = lim
n→∞

(deg(F n))
1
n ,

which is known as the dynamical degree in [1] and the logarithm of this quantity
has been called the algebraic entropy in [6] and [2].

In order to classify our family (1) we first make an identification of two ex-
isting cases in (1). For all the values of parameters for which the determinants
(γδ)12 and (αδ)12 are zero we call it a degenerate case and the values of param-
eters for which these determinants are non zero we say that the family (1)
lies in the non degenerate case. In general the family (1) has dynamical degree
D = 2. The main interest is to identify the possible subcases of (1) for all the
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parameter values. By the help of the associated characteristic polynomial of each
subcase/subfamily we are able to know their growth rate. Therefore we find
the dynamical degree D for all the subcases in order to locate the subfamilies
with entropy zero and the ones where 1 < D < 2. The subfamilies with zero
entropy have rather simpler dynamics than the other subfamilies which have
non zero entropy. This talk will focus on providing information of all the existing
subcases/subfamilies of (1) in both above mentioned cases. Some families with
zero entropy will also be shown.
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The Bohl-Perron result on exponential dichotomy for a linear difference equation

x(n+ 1)− x(n) = −
m∑
l=1

al(n)x(hl(n)), hl(n) ≤ n,

states (under some natural conditions) that if all solutions of the non-
homogeneous equations with a bounded right hand side are bounded, then the
relevant homogeneous equation is exponentially stable. According to its corol-
lary, if a given equation is close to an exponentially stable comparison equation
(the norm of some operator is less than one), then the considered equation is ex-
ponentially stable.

For a difference equation with several variable delays and coefficients we obtain
new exponential stability tests using the above results, representation of solutions
and comparison equations with a positive fundamental function.

Main results of the talk where published in [1].
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On Poincaré–Perron theorems for systems of
linear difference equations
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The classical theorems of Poincaré and Perron are concerned with the asymptotic
behavior of solutions of scalar kth order linear difference equations

y(n+ k) + [c1 + p1(n)]y(n+ k − 1) + · · ·+ [ck + pk(n)]y(n) = 0,

with pi(n)→ 0 as n→∞, 1 ≤ i ≤ k.

More recently, generalizations to the asymptotic behavior of solutions of systems
of first order difference equations

~y(n+ 1) = [A+ P (n)] ~y(n), P (n)→ 0 as n→∞,

have attracted significant interest. Contributions include works by Máté and
Nevai, Trench, Pituk, and M. Pinto.

In our talk, we will briefly review some of the established results in this field
before presenting further generalizations derived in our work.
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The relation between the exponential stability of linear difference equations with
infinite delay and the `p-input `q-state stability (Perron’s property) is investigated.
The Perron’s property means that solutions of the non-homogeneous equation
with zero initial data belong to `q when non-homogeneous terms are in `p. The
two properties are equivalent in a wide range of spaces, under some conditions,
which include uniform boundedness of operators and exponential memory fad-
ing. We demonstrate [1] that these conditions are to some extent necessary.
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The long run behaviour of a finite dimensional finite delay summation equation
with an additive Gaussian noise is analysed. This equation may be considered
as a generalisation of an autoregressive process of arbitrary, but finite, order. It is
known from existing theory that the asymptotic behaviour of the resolvent func-
tion of such an equation may be expressed in terms of the roots of its characteristic
equation, c.f. e.g. [1]. It is shown that the solution of the stochastic equation is also
reliant upon the leading order roots of the characteristic equation.

Admissibility theory of deterministic equations has been studied in connection
with the asymptotic theory of such equations, in e.g. [2]. The authors develop a
stochastic admissibility theory of linear Volterra operators to obtain their results.
While the asymptotic results described in this presentation hold almost surely it
is shown that this mode of convergence implies convergence in mean square.

In addition to the finite delay stochastic equation, a Volterra summation equation
is also discussed. Some examples of the results are sketched which illustrate the
differing types of long run behaviour which may occur depending upon the order
of the leading roots and whether the leading roots are purely real or complex.
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A linear (k + 1)th-order discrete delayed equation ∆x(n) = −p(n)x(n− k) where
p(n) is a positive sequence is considered for n → ∞. This equation is known to
have a positive solution if the sequence p(n) satisfies an inequality. Recently it
was proved that if

p(n) ≤
(

k

k + 1

)k
×
[

1

k + 1
+

k

8n2
+

k

8(n lnn)2
+ · · ·+ k

8(n lnn . . . lnq n)2

]
, (1)

where q ∈ N0, then there exists a positive vanishing solution of the considered
equation and the upper bound was found. We improve this result by finding
even the lower bound for the positive solution, supposing the function p(n) is
bounded above and below by certain functions. As well we show that, in the case
of an opposite inequality to (1) for p(n), all solutions of the equation considered
are oscillating for n→∞.
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We present some our recent results on asymptotic and oscillatory properties of
solutions for the nonlinear difference equations of the fourth order

∆
(
an

(
∆bn (∆cn (∆xn)γ)

β
)α)

+ dnf(xn+τ ) = 0, (n ∈ N)

where α, β, γ are the ratios of odd positive integers, {an}, {bn}, {cn}, {dn} are
positive real sequences defined for n ∈ N and τ ∈ Z is a deviating argument.
The role of the deviating argument to oscillation will be given, too. This is a joint
work with Jana Krejčová.
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Department of Mathematics and Statistics, Masaryk University, Brno, Czech Republic
E-mail address: dosly@math.muni.cz
URL: http://www.math.muni.cz/˜dosly

We consider symplectic difference systems

zk+1 = Sk(λ)zk, Sk ∈ R2n×2n, z ∈ R2n, (1)

depending on a (generally complex valued) parameter λ. We suppose that the
matrices Sk are J-unitary, i.e.

S∗(λ)J S(λ) = J , J =

(
0 I
−I 0

)
,

and N -periodic, i.e., Sk+N(λ) = Sk(λ), k ∈ N. We show that some previous results
on periodic Hamiltonian difference systems [2, 3] (which are a special case of (1))
can be extended to (1). In particular, we demonstrate that the classical Krein’s
traffic rules for multipliers of the monodromy matrix of periodic Hamiltonian
differential systems, cf. [1], remain to hold also for periodic symplecitc difference
systems.
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Moving average network examples for asymptotically
stable periodic orbits of strongly monotone maps

BARNABAS M. GARAY
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E-mail address: garay@digitus.itk.ppke.hu
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Given a graph Γ, the discrete–time dynamical system

(x1,t, . . . , xI,t) = xt → xt+1 = F(xt) , t = 0, 1, . . .

on the I–dimensional unit cube [0, 1]I is considered where

(F(xt))i = F (x̄i,t) , i = 1, . . . , I ,

F : [0, 1]→ [0, 1] is a strictly increasing continuous function,

x̄i,t =
1

ni

∑
j∈Ni

xi,t ,

i is a vertex of Γ, and Ni is the set of its neighbouring vertices with
ni = card(Ni) 6= 0.

Conditions for the existence of a globally asymptotically stable fixed point as
well as a variety of examples for asymptotically stable nontrivial periodic orbits
is presented. The motivation comes from modelling local interactions in tax
evasion [1].

The talk is based on joint work with Judit Várdai.
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Utilization of the circulant matrix theory in periodic
higher order autonomous difference equations

ISTVÁN GYŐRI

Department of Matematics, University of Pannonia, Veszprém, Hungary

E-mail address: gyori@almos.uni-pannon.hu

In this talk we develop easily verifiable tests that we can apply to determine
whether or not a higher order autonomous difference equation has a p-periodic
solution. One of the main tools in our investigations is a transformation, recently
introduced by the authors, which formulates a given higher order difference
equation as a first order recursion. The second important tool is the theory of
circulant matrices. The periodicity conditions are formulated in terms of the co-
efficients of the higher order equation, along with examples showing that they
have nontrivial applications.
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Asymptotic behavior of nonlinear
difference equations

FERENC HARTUNG

Department of Matematics, University of Pannonia, Veszprém, Hungary

E-mail address: hartung.ferenc@uni-pannon.hu

In this talk we investigate the growth/decay rate of solutions of a class of non-
linear Volterra difference equations. Our results can be applied for the case when
the characteristic equation of an associated linear difference equation has com-
plex dominant eigenvalue with higher than one multiplicity. Illustrative exam-
ples are given for describing the asymptotic behavior of solutions in a class of
linear difference equations and in several discrete nonlinear population models.
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Sharp algebraic periodicity conditions for linear
higher order difference equations

LÁSZLÓ HORVÁTH

Department of Mathematics, University of Pannonia, 8200 Veszprém, Egyetem u. 10.,
Hungary

E-mail address: lhorvath@almos.uni-pannon.hu

It will be derived new necessary and sufficient, and sufficient algebraic conditions
on the periodicity of the solutions of the d-dimensional system of the sth order
difference equations

x(n) =
s∑
i=1

Ai(n)x(n− i), n ≥ 0,

where

(C1) s ≥ 1 is a given integer, and Ai(n) ∈ Rd×d for every 1 ≤ i ≤ s and n ≥ 0.

The main tool in our investigation is a transformation, recently introduced by
Győri and Horváth in [1], which formulates a given higher order recursion as a
first order difference equation in the phase space. The periodicity conditions are
formulated in terms of the so called companion matrices and the coefficients of
the given higher order equation, as well (see [2]).
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Asymptotic formula for solutions of Volterra
difference equations with infinite delay

HIDEAKI MATSUNAGA

Department of Mathematical Sciences, Osaka Prefecture University,
Sakai 599-8531, Japan

E-mail address: hideaki@ms.osakafu-u.ac.jp

For linear Volterra difference equations with infinite delay, we obtain an explicit
asymptotic representation formula of solutions by utilizing a part of some bases
belonging to the phase space, together with a part of the dual bases for the formal
adjoint equation associated with a certain bilinear form. Our technique employed
here is similar to the standard one in the theory of linear functional differential
equations.
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A continuous separation of tipe II. Applications to
nonautonomous delay differential equations.
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Poláčik and Tereščák proved the existence of a continuous separation for a gen-
eral abstract mapping Φ satisfying the usual strong monotonicity, smoothness
and compactness condition. In many important applications the origin of this
map is a homeomorphism F of a compact metric subset K in a Banach space X
and Φ is defined by Φ : K ×X → K ×X, (ω, x)→ (F (ω), dF (ω)(x)).

For nonautonomus cooperative ordinary and parabolic equations we prove that
if the constant matrix defined by the superior of the partial derivatives of the
vector field on a minimal set K is irreducible then the flow map of the linearized
equation at certain time t1 admits a continuous separation on K × X . However
this kind of results are no longer valid for nonautonomous cooperative delay
differential equations. In this case the linear flow map is not eventually strongly
positive but satisfies a dichotomy behavior which provides a dynamical scenario
that we define as a continuous separation of type II. This scenario preserves many
of the previous dynamical properties which are relevant in the applications of the
theory.
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A variant of the Krein-Rutman theorem
for Poincaré difference equations
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Let xn, n ∈ N, be a nonvanishing solution of the Poincaré difference equation

xn+1 = Anxn, n ∈ N,

where An, n ∈ N, are k × k real matrices such that the limit A = limn→∞An exists
(entrywise). According to a Perron type theorem, the limit ρ = limn→∞

n
√
‖xn‖

exists and is equal to the modulus of one of the eigenvalues of A. In this talk,
we show that if the solution belongs to a given order cone K in Rk, then ρ is an
eigenvalue of A with an eigenvector in K. In the case of constant coefficients, this
result implies the finite-dimensional version of the Krein-Rutman theorem.
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Boundedness Character of solutions, Monotonic
Character of solutions and Existence of Periodic

Solutions of a Non-Autonomous Rational Difference
Equation

MICHAEL A. RADIN

(in collaboration with Nicholas Batista, Mark Bellavia
& Frank Palladino)

Rochester Institute of Technology,
School of Mathematical Sciences,

Rochester, New York 14623
USA

E-mail address: michael.radin@rit.edu

Our aim is to investigate the boundedness character, the periodic character and
the monotonic character of the non-negative solutions of the following non-
autonomous rational difference equation:

xn+1 =
Anxn−l

1 +
∑k

i=0 Bixi
, n = 0, 1, . . . ,

where {An}∞n=0 is a periodic sequence of positive real numbers,
∑k

i=0 Bi > 0,
l = 0, 1, 2, . . ., and k = 1, 2, 3, . . .. We will examine how the different periods of the
sequence and the relationship of the terms of the sequence affect the longer term
behavior of the solutions.
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A QRT-system of two order one homographic
difference equations: conjugation

to rotations, periods of periodic solutions,
sensitiveness to initial conditions
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We study the QRT-system of order one homographic difference equations in R+
∗
2

(1) un+1un = 1 +
d

vn
vn+1vn = 1 +

d

un+1

, for d > 0, u0 > 0 v0 > 0.

Using some tools presented in the references we prove the following results.

(1) The invariant G(x, y) = x + y +
1

x
+

1

y
+

d

xy
has a strict minimum Km at

the equilibrium L = (`, `) (where `3 − ` − d = 0), and so the solutions of (1)
are permanent and L is locally stable. The orbit of a point M0 = (u0, v0) ∈ R+

∗
2

is included in the positive component C+K of the cubic curve CK with equation
(xy + 1)(x+ y) + d−Kxy = 0 passing through M0 (for a unique K > Km).

(2) With the use of the group law on the cubic CK and with the use of Weierstrass’
function ℘ one can see that the restriction to C+K of the map F defined on R+

∗
2 by

F (x, y) = (X, Y ), where Xx = 1 +
d

y
, Y y = 1 +

d

X
with F (un, vn) = (un+1, vn+1)

is conjugated to a rotation on the circle T of an angle 2πθd(K), where θd(K) ∈
]0, 1/2[ is given explicitely by the ratio of two integrals. There is a non-empty
open interval I ⊂]0,+∞[ such that for each d ∈ I the map K 7→ θd(K) is not
one-to-one.
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(3) The set of starting points with periodic orbits is dense in R+
∗
2, and the only

integers which are not periods of some solution of (1) for some d > 0 are 2, 3, 4, 6
and 10.

(4) For every compact K ⊂ R+
∗
2 not containing the equilibrium, it exists a number

δK > 0 such that F |K has δK-sensitiveness to initial conditions: in every neigh-
borhood of M ∈ K it exists a point M ′ such that ||F n(M) − F n(M ′)|| ≥ δK for
infinitely many integers n .
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Averaging theorems for dynamic equations
on time scales

ANTONÍN SLAVÍK
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E-mail address: slavik@karlin.mff.cuni.cz
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Classical averaging theorems for ordinary differential equations are concerned
with the initial-value problem

x′(t) = εf(t, x(t)) + ε2g(t, x(t), ε), x(t0) = x0,

where ε > 0 is a small parameter. According to these averaging theorems, a good
approximation of the solution can be obtained by considering the autonomous
differential equation

y′(t) = εf 0(y(t)), y(t0) = x0,

where f 0(y) = limT→∞
1
T

∫ t0+T
t0

f(t, y) dt.

The aim of the talk is to present time scale analogues of both periodic and non-
periodic averaging theorems, as well as a related theorem on the existence of
periodic solutions of dynamic equations (see [1, 2]). We make use of the cor-
respondence between dynamic equations and generalized ordinary differential
equations (see [3]).
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Oscillation theorems for second-order nonlinear
difference equations of Euler type
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Department of Mathematical Sciences, Osaka Prefecture University,
Sakai 599-8531, Japan

E-mail address: yamaoka@ms.osakafu-u.ac.jp

This talk deals with the oscillatory behavior of the difference equation which cor-
responds to the nonlinear differential equation of Euler type x′′ + f(x)/t2 = 0,
where f(x) is continuous on R and satisfies the signum condition xf(x) > 0 if
x 6= 0. To give the oscillation theorem for the nonlinear difference equation, we
consider the linear difference equation corresponding to the Riemann-Weber ver-
sion of the Euler differential equation.
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Turan-type inequalities and Taylor domination
for solutions of linear ODE’s
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Let a family of analytic functions fλ(z) =
∑∞

k=0 ak(λ)zk be given, and let R(λ) be
the radius of convergence of fλ. The family fλ possesses a property of an (N,C)-
uniform Taylor domination if

|ak(λ)|Rk(λ) ≤ C max
i=0,...,N

|ai(λ)|Ri(λ), k = N,N + 1, . . . , (1)

with N and C not depending on λ. Taylor domination provides, in particular, a
uniform bound on the number of zeroes of fλ in each disk strictly contained in
the disk of convergence.

An important example is the family Rd
λ of all rational functions of degree d. Here

uniform Taylor domination follows from the classical Turan lemma ([3]). Equiv-
alently, Taylor domination holds for solutions of a linear recurrence relation with
constant coefficients.

In this talk we discuss uniform Taylor domination for solutions of linear differen-
tial equations with polynomial coefficients, or for linear recurrence relations with
the coefficients polynomially depending on the index. This is the situation of the
classical Poincaré-Perron theorem ([2]), however, we are not aware of any gener-
alization of the Turan lemma to this case. We prove a weaker version, where C
in (1) is replaced by Ck, and discuss a “dynamical” approach (as in some proofs
of the Poincaré-Perron theorem - see [2, 1]) to the original case. We also consider
Taylor domination for the sequences of the moments of a given algebraic func-
tion.
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The dynamics of some contest-competition
population models with the effect

of harvesting and stocking
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In this talk, we consider contest-competition population models of the form
xn+1 = xnf(xn−k), where k = 0, 1 and the map f(x) is decreasing on [0,∞).
We investigate the dynamics under different harvesting or stocking strategies. In
particular, we give some results concerning periodicity, stability, invariants and
persistent sets.
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Geometric methods for global stability in the Ricker
competition model
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It is an important problem to determine when local conditions can be globally
verified. In [2] and [3], the authors investigated the local stability of the equilib-
rium points of the logistic competition model and the Ricker competition model,
respectively. It was shown that the coexistence equilibrium point of the Ricker
competition model is locally asymptotically stable if the parameters lie in a cer-
tain stability region in the parameter space.

Later in [1] it was conjectured that the coexistence (positive) equilibrium is in-
deed globally asymptotically stable in the hypotheses above. In this talk, we will
discuss the geometric and topological tools that allow us to completely describe
the geometry of the image of the Ricker map. We will use singularity theory to de-
scribe the relative position of the images of the critical curves and, using methods
from covering space theory, we will describe the regions where the cardinality of
the pre-images of points are constant. Finally we will describe how these methods
are used to show global stability.
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Difference equations arising in evolutionary
population dynamics

JIM M. CUSHING1, SIMON MACCRACKEN STUMP2

1 Department of Mathematics, Interdisciplinary Program in Applied Mathematics, The
University of Arizona, 617 N. Santa Rita Ave., Tucson, AZ 85721 USA.
E-mail address: cushing@math.arizona.edu
URL: http://math.arizona.edu/˜cushing/
2 Department of Ecology & Evolutionary Biology, The University of Arizona, 1041 E.
Lowell St., Tucson, AZ 85721 USA.
E-mail address: sstump@email.arizona.edu

Difference (matrix) equation models in population dynamics that arise in the
modeling of certain life history strategies, namely semelparity, give rise to an in-
teresting dynamic dichotomy. This dichotomy consists of two invariant sets, each
of which is a potential attractor (but never both) [1]. One is an equilibrium interior
to the positive cone and the other lies on the boundary of the positive cone (and
yields synchronized periodic orbits). Which is the attractor depends on the na-
ture of the nonlinearities (specifically the strengths of the nonlinear interactions
between and within age classes) [2, 3]. I will describe the difference equations
that arise when such a population is subject Darwinian evolution [4] and give
theorems that describe the nature of the dynamic dichotomy in an evolutionary
context.
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This work extends the notion of Allee effect to two-dimensional setting. In this
setting, Allee (threshold) point will be replaced by Allee (threshold) curve. The
case we examine here is when one or both species possess the Allee effect. The
notion of critical curves and singularity theory will be used to understanding the
global dynamics of certain competition models with Allee effect.
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Sufficient conditions for the global asymptotic stability of one equilibrium point
of a generalized Lotka-Volterra competition system, which appears as a model
for dynamics with one extinct species , is obtained by applying the technique of
average functions and limiting equations.
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Local stability implies global stability in the Ricker
competition model
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In [2] and [3] the authors investigated the local stability of the equilibrium points
of the logistic competition model and the Ricker competition model, respectively.
It was shown that in each model, the coexistence equilibrium point is locally
asymptotically stable if the parameters lie in a certain stability region in the pa-
rameter space.

We conjectured in [1] that in this stability region, the coexistence (positive) equi-
librium is indeed globally asymptotically stable with respect to the interior of the
first quadrant. The proof of this conjecture follow a complex set of tools. It in-
cludes singularity theory of planar maps, the notion of critical curves, one-point
compactification of the positive quadrant, the dynamics of the local slow mani-
fold of the coexistence fixed point and the global unstable manifold of the exclu-
sion fixed point.

In this talk we will focus our attention in the dynamics of the manifolds. We will
present the principal tolls that we use to show global stability of the coexistence
fixed point.
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Phase as determined by Correlation is irrelevant for
Resonance versus Attenuation in the Beverton-Holt

model
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An exact expression is derived relating the state average of the periodic solution
xj to the average of the environmental carrying capacities Kj for the periodic
Beverton-Holt equation for arbitrary period. By studying numerically the period
3 case we show that the correlation coefficient of the intrinsic growth rates uj
and Kj is not relevant in determining attenuation or resonance. Instead a new
criterion is presented.
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Rigidity for non-recurrent exponential maps

ANNA M. BENINI
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An exponential map f(z) = ez+c is called non-recurrent if the asymptotic value c
is not in the accumulation set of its own forward orbit. We will present the result
that whenever two non-recurrent exponential maps satisfy some combinatorial
equivalence, then they are conjugate by a quasiconformal map. If moreover c has
a bounded orbit, the conjugation can be made conformal.
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On the Tongues of a Degree 4 Blashcke Product
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The family of Blashcke products Ba(z) = z3(z − a)/(1− āz) is the rational analo-
gous of the double standard family given by h(z) = eiαz2eβ/2(z−1/z). Both families
restrict, for certain parameters, to degree 2 coverings of the unit circle. This fact
leads to some interesting phenomena like the existence of tongues in the param-
eter plane. This tongues were studied for the first time by M. Misiurewicz and A.
Rodrigues [1] and are a degree 2 analogous of the Arnold Tongues.

During the talk we will introduce the concept of tongue for the Blashcke family
and we will study what occurs around the tongues. We will also study some
phenomena which take place because of not having an holomorphic dependence
with respect to parameters, like the existence of small copies of the Mandelbar set
(see [2]).
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Conformal dimension and combinatorial modulus:
applications to rational maps
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A fundamental quasisymmetry numerical invariant of a compact metric space X
is its conformal dimension dimARX . It was introduced by P. Pansu in order to
classify, up to quasi-isometry, homogeneous spaces of negative curvature [3, 2].
Motivated by Sullivan’s dictionary [4, 1], which establishes a fundamental corre-
spondence between the properties of hyperbolic groups and of a particular class
of finite branched coverings, I will define this invariant in the context of rational
maps. I will show how to compute dimARX using the critical exponent QM asso-
ciated to the combinatorial modulus, which is a discrete version of the conformal
modulus from complex analysis. Finally, I will apply this result to compute the
conformal dimension of the Julia sets of some hyperbolic rational maps.
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Perturbed Polynomial Maps with Small Perturbation
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We consider the family of rational maps Fλ(z) = zn + λ
zn

with λ ∈ C. For n > 2,
Julia sets for maps corresponding to parameters near the origin are Cantor sets
of simple closed curves. For n = 2, however, as λ approaches zero, it is known
that the Julia sets for these maps converge to the closed unit disc in the Hausdorff
metric. In this talk, we give a description of a ”ring structure” in the parameter
plane for n = 2 near λ = 0, identifying a pattern of rings of alternating Sierpiński
holes and Mandelbrot sets surrounding the origin.
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Convergence of Rational Rays in Hyperbolic
Components
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We are interested in entire transcendental maps with two singular values, one of
which is a fixed critical value, and the other is a free asymptotic value, with only
one finite preimage. The family of such maps can be parametrized as:

fa(z) = a(ez(z − 1) + 1)

where the critical value is fixed at z = 0, and the asymptotic value is at z = a,
with finite preimage at z = 1.
In this talk, we illustrate in this family, proof of a landing theorem of rational rays
in hyperbolic components by means of Carathéodory Convergence Theory, and
discuss further results in parameter spaces.
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We will define some classes of meromorphic functions which have a finite set of
singular values. We will state some results in complex dynamics which can be
applied to all of these classes of functions. We will also give some new results.
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Quadratic Mating Discontinuity
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According to Milnor, the mating operation is interesting because it has none of
the usual good properties. It is not injective, surjective, everywher defined, or
continuous. We give a survey of discontinuity mechanisms, with special attention
to the quadratic case.
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in Baker domains
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Let U be a hyperbolic domain in C and let f : U → U be a holomorphic map.
An invariant domain W ⊂ U is called absorbing in U for f if for every compact set
K ⊂ U there exists n = n(K) > 0, such that fn(K) ⊂ W . The problem of existence
of absorbing domains for a given f and U has a long history, since such sets are
useful in many problems in dynamics.

Based in the Denjoy-Wolf Theorem (on dynamics of holomorphic maps on the
unit disc), Cowen proved the existence of a simply connected absorbing domain
V ⊂ H for holomorphic maps G : H → H (where H denotes the right half plane)
such that Gn → ∞ as n → ∞. He also showed the existence of a semiconjugacy
(actually a conjugacy on V ) of the map G to a Möbius transformation T acting on
Ω where Ω ∈ {H,C}.
Later, König used Cowen’s Theorem to prove the existence of simply connected
absorbing domains in Baker domains of meromorphic maps with finitely many
poles. Moreover König also showed, by means of an example, that simply con-
nected absorbing domains do not always exist.

The main result we present here is the existence of (possibly multiply connected)
absorbing domains in the general case (putting especial attention on the case
of Baker domains for transcendental meromorphic functions). In another talk,
Xavier Jarque will show how to use this result to prove the connectedness of the
Julia set for transcendental meromorphic maps having no weakly repelling fixed
points.
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We consider the family of rational maps Fλ(z) = z2 + λ
z2

with λ ∈ C. In particular,
we choose λ from the main cardioid of an accessible period-k baby Mandelbrot
set with k ≥ 2. When k = 2 , there exists a dynamical invariant (identical to
that used in the discussion of checkerboard Julia sets) to determine when the
dynamics of two such maps are conjugate. When k > 2, we discuss the existence
of a topological invariant for homeomorphisms between Julia sets of the same
prime period.
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Sierpiński curve Julia sets for quadratic rational maps
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The Sierpiński carpet fractal is one best known planar, compact, connected sets. It
is a universal plane continuum and there is a topological characterization of this
set. Any planar set homeomorphic to a Sierpiński carpet is called a Sierpiński
curve. In recent years several authors have shown that Sierpiński curve can arise
as the Julia set of certain holomorphic functions. We make an attempt towards
a more systematic approach to the problem of existence of Sierpiński curves as
Julia sets of rational maps. Our goal is to find dynamical conditions under which
we can assure that the Julia set of a certain quadratic rational map is a Sierpiński
curve.
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A Julia component is said buried if it has no intersection with the boundary of any
Fatou domain. It is well known that may not arise for polynomial maps. The first
example of such Julia components is due to Curtis McMullen [1] who provided a
family of rational maps for which the disconnected Julia set is a Cantor of Jordan
curves. However all known examples of buried Julia components, up to now, are
wandering Jordan curves and comes from rational maps of degree at least 5.

I will introduce a family of degree 3 rational maps whose disconnected Julia set
contains buried Julia components of all types which may occur a priori according
to a result of Kevin Pilgrim and Tan Lei [2]: wandering points, wandering Jordan
curves but also preperiodic infinitely connected Julia components. That totally
answers a question McMullen raised since 3 is the minimal degree expected for
rational map with buried Julia components [3].
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I am interested in the iteration of holomorphic self-maps of the punctured plane
C∗ = C \ {0} for which both zero and infinity are essential singularities. These
maps are of the form f(z) = zn exp(g(z) + h(1/z)) with n ∈ Z and g(z), h(z) non-
constant entire functions. In particular, I would like to understand what is the
structure of the escaping set I(f), the set of points whose orbit accumulates to
zero and/or infinity.

In the setting of transcendental entire functions, A. Eremenko conjectured that
every z ∈ I(f) could be joined with∞ by a curve in I(f). In analogy to what G.
Rottenfußer, J. Rückert, L. Rempe and D. Schleicher proved in [1] for functions
in class B, we show that this property holds for a class of functions whose singu-
lar set is bounded away from zero and from infinity and satisfy some technical
conditions which are related to the notion of finite order.
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An escape time Sierpinski map is a rational map drawn from the McMullen fam-
ily z 7→ zn + λ/zn with escaping critical orbits and Julia set homeomorphic to the
Sierpinski curve continuum. We address the problem of characterizing (postcrit-
ically finite) escape time Sierpinski maps in a combinatorial way. To accomplish
this, we define a combinatorial model given by a planar tree whose vertices come
with a pair of combinatorial data that codifies the dynamics of critical orbits. We
show that each escape time Sierpinski map realizes a subgraph of the combinato-
rial tree and the combinatorial information is a complete conjugacy invariant.
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Let f be a transcendental entire function in the class B, that is, the set of singular
values of f is bounded. We present some new results about the Hausdorff di-
mension and Hausdorff measure of the escaping set I(f) and various subsets of
it.

We show that for any given sequence (pn) tending to∞, the set of escaping points
with |fn(z)| ≤ pn always has Hausdorff dimension at least 1, and that there are
functions f for which this set can be ’larger’ than the fast escaping set of f (in a
certain sense). This result contrasts with the situation for exponential maps, since
in this case it is known that the fast escaping set has a larger Hausdorff dimension
than the set points that escape slowly.

Further, we set Bρ := {f ∈ B : f has order ρ}. We show that the set I(f) has
infinite Hausdorff measure with respect to a certain gauge function hρ for every
ρ ≥ 1/2 and f ∈ Bρ. On the other hand, for ρ̃ large enough, we prove the existence
of a function f ∈ Bρ̃ such that I(f) has zero measure with respect to hρ. This
means that the escaping sets of functions in class B of finite order can become
smaller as the order increases.
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We give a new sufficient condition for a point to be in the fast escaping set A(f)
of a transcendental entire function f ; see [2] for details and results about A(f).
More precisely, we show that the ‘quite fast escaping set’ Q(f), introduced in [3],
is equal to A(f) if and only if the maximum modulus of f satisfies a certain regu-
larity condition called ‘weak regularity’. We show that weak regularity holds, as
does an even stronger regularity condition called ‘log-regularity’, whenever the
minimum modulus of f is not too large, in particular whenever f belongs to the
Eremenko-Lyubich class B; see [1].
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We will present how rigidity results can be used to study the boundary of hyper-
bolic components.
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In recent years, families of complex rational maps that result from perturbing well
known quadratic maps such as Q0(z) = z2 and Qc(z) = zn + c, where c is the cen-
ter of the corresponding Multibrot set, have been of interest. In this presentation,
we consider maps of the form Pc(z) = z2 + c, where c is the center of a hyperbolic
component of the Mandelbrot set, that have been perturbed by the addition of a
pole or multiple poles which affect the superattracting cycle of the unperturbed
map. We will focus on the topological and dynamical characteristics of the re-
sulting Julia sets. In particular, we will give conditions which guarantee that the
corresponding Julia set contains homeomorphic copies of the unperturbed Julia
set, Cantor sets of quasicircles, and Cantor sets of point components that accu-
mulate on these curves.

123

elizabeth.d.russell@gmail.com


Special Session: Complex Dynamics

Spiders web escaping sets

GWYNETH STALLARD

(in collaboration with Phil Rippon)

Department of Mathematics and Statistics,
The Open University,

Milton Keynes MK7 6AA
UK

E-mail address: g.m.stallard@open.ac.uk

We discuss examples of functions for which the escaping set I(f) has the structure
of a ‘spider’s web’. In particular, we consider the case that a subset AR(f) of the
fast escaping set A(f) has this structure. In this case the function has many strong
dynamical properties, and both Eremenko’s conjecture and Baker’s conjecture
hold as discussed in [2]. Further, the escaping set has a very intricate structure as
described in [2] and [1]. We conclude by giving examples for which the ‘quite fast
escaping set’ Q(f) is a spider’s web (by results in [3]) but A(f) is not, as shown
in [4].
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We consider rational functions of one complex variable as topological dynamical
systems on the sphere. These maps can be given by explicit formulas. However,
explicit algebraic descriptions do not provide a good understanding of topologi-
cal dynamics. Thus one needs descriptions, which we call topological models, that
would be explicit in a different sense, i.e. from the viewpoint of topological dy-
namics.

Topological models for polynomials with locally connected Julia sets can be de-
scribed in terms of Thurston’s laminations in the disk. There are several remarkable
constructions that build topological models for rational functions out of topolog-
ical models for polynomials, for example, matings and captures.

We discuss another surgery tool called regluing [1]. It can be used to build new
topological models for rational functions out of the already known topological
models. E.g. captures can be understood as regluings. Moreover, regluing pro-
duces many matings out of every capture. In this way, we can prove that the
boundaries of many hyperbolic components in parameter slices of degree two
rational functions consist of matings [2].
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In this talk we show that if a meromorphic transcendental map has a multiply
connected Baker domain, then it must also have at least one weakly repelling
fixed point (i.e. repelling or with derivative equal to one). This was the last re-
maining case in the proof of the following result (which was proven by Shishikura
for rational maps): If f is a meromorphic transcendental map with a disconnected
Julia set, then f has a weakly repelling fixed point. The historical motivation of
this theorem was its corollary, namely that the Julia set of Newton’s method of
every entire map is connected or, equivalently, all its Fatou components are sim-
ply connected. To prove this theorem we use a result explained in Núria Fagella’s
talk, which shows the existence of absorbing regions in Baker domains, a question
which has been open for some time.
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Let f be a transcendental entire function. For n ∈ N, let fn denote the nth iterate
of f . The set F (f) = {z ∈ C : (fn)n∈N is normal in some neighbourhood of z} is
called the Fatou set of f , and the set C \ F (f) denoted by J(f) is called the Julia
set of f .

Let U be a component of F (f), then by complete invariance of the Fatou set, f(U)
lies in some component V of F (f). If Un∩Um = φ for n 6= m,where Un denotes the
component of F (f) which contains fn(U), then U is called a wandering domain,
else U is called a pre-periodic domain, and if Un = U for some n ∈ N, then U is
called periodic domain.

Here we present some of the results that we have obtained on the wandering and
periodic domains using approximation theory.
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Graph theoretic structure of maps of the Cantor space
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We develop unifying graph theoretic techniques to study the dynamics and the
structure of the spaces H(X) and C(X), the space of homeomorphisms and
the space of continuous self-maps of the Cantor space X , respectively. Using
our methods, we give characterizations which determine when two homeomor-
phisms of the Cantor space are conjugate to each other. We also give a new char-
acterization of the comeager conjugacy class of the space H(X). The existence of
this class was established by Kechris and Rosendal in [9] and a specific element of
this class was described concretely by Akin, Glasner and Weiss in [1]. Our char-
acterization readily implies many old and new dynamical properties of elements
of this class. For example, we show that no element of this class has a Li-Yorke
pair, implying the well known Glasner-Weiss result [8] that there is a comeager
subset of H(X) each element of which has topological entropy zero. Our analo-
gous investigation in C(X) yields a surprising result: there is a comeager subset
of C(X) such that any two elements of this set are conjugate to each other by
an element of H(X). Our description of this class also yields many old and new
results concerning dynamics of a comeager subset of C(X).
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We show the equivalence between Li-Yorke chaos and the existence of an irreg-
ular vector and the equivalence between distributional chaos and the existence
of a distributionally irregular vector for a linear continuous operator in a Banach
spaces.

Moreover we give sufficient conditions in order to obtain dense distributional
chaos in Frechet spaces. As consecuence we obtain:

A)Let T be a linear and continuous operator on X . If there exists a dense set X0

such that lim
n→∞

T nx = 0, for all x ∈ X0 and one of the following conditions is true:

a) X is a Fréchet space and there exists a eigenvalue λ with |λ| > 1.

b) X is a Banach space and
∑

1
‖Tn‖ <∞ (in particular if r(T ) > 1).

c) X is a Hilbert space and
∑

1
‖Tn‖2 < ∞(in particular if σp(T ) ∩ T has positive

Lebesgue measure).

then T is densely distributionally chaotic.

B) All operator that satisfies the Frequent Hypercyclic criterion is dense distribu-
tionally chaotic.
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In the study of the dynamics of linear operators defined on Banach spaces, inter-
esting phenomena appear when we consider an underlying infinite-dimensional
setting. Several notions of chaos, such as the ones of Devaney and Auslander &
Yorke (hypercyclicity), have been already considered for linear operators and C0-
semigroups of operators that give the solution of certain abstract Cauchy prob-
lems. We refer to the monograph by Grosse-Erdmann and Peris [2] for further
information on these topics.

The notion of distributional chaos has been recently added to the study of the
chaoticity of linear operators [3]. We will report some results concerning how
does it works on C0-semigroups of operators. In particular several examples of
partial differential equations that present this behaviour will be provided. More-
over, we will provide an example of a C0-semigroup with a full scrambled set.
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Chaotic solution for the Black-Scholes equation
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The Black-Scholes semigroup is studied on spaces of continuous functions on
[0,∞) which may grow at both 0 and at∞, which is important since the standard
initial value is an unbounded function. We prove that in the Banach spaces

Y s,τ := {u ∈ C((0,∞)) : lim
x→∞

u(x)

1 + xs
= lim

x→0

u(x)

1 + x−τ
= 0}

with norm ‖u‖Y s,τ = supx>0

∣∣∣ u(x)
(1+xs)(1+x−τ )

∣∣∣ < ∞, the Black-Scholes semigroup is

strongly continuous and chaotic for s > 1, τ ≥ 0 with sν > 1, where
√

2ν is the
volatility. The proof relies on the Godefroy-Shapiro hypercyclicity criterion.
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In recent years, considerable effort has been directed toward the topological dy-
namics of abstract PDEs whose solutions are governed by various types of op-
erator semigroups, fractional resolvent operator families and evolution systems.
In this talk, we shall present the most important results about hypercyclic and
topologically mixing properties of some special subclasses of the abstract time-
fractional equations of the following form:

Dαn
t u(t) + cn−1D

αn−1

t u(t) + · · ·+ c1D
α1
t u(t) = ADα

t u(t), t > 0,

u(k)(0) = uk, k = 0, · · ·, dαne − 1,

where n ∈ N \ {1}, A is a closed linear operator acting on a separable infinite-
dimensional complex Banach space E, c1, · · ·, cn−1 are certain complex constants,
0 ≤ α1 < ··· < αn, 0 ≤ α < αn, and Dα

t denotes the Caputo fractional derivative of
order α. We slightly generalize results from [1] and provide several applications,
including those to abstract higher order differential equations.
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In recent years many researchers were looking for conditions that yield complex,
nontrivial dynamics of linear operators (note that, to admit such behaviour, the
space must be infinite dimensional). Probably the most studied is the notion of
hypercyclicity, that is, the existence of vectors x ∈ X such that the orbit of this
vector x, T (x), T 2(x), . . . under the action of a continuous and linear operator
T : X → X on a topological vector space (most often Banach or Fréchet space)
X forms a dense subset of X . Distributional chaos was introduced by Schweizer
and Smital as a natural extension of Li-Yorke chaos and we consider its strongest
notion of uniform distributional chaos, which requires the existence of an uncount-
able set D ⊂ X and ε > 0 such that for every t > 0 and every distinct x, y ∈ D the
upper densities of the sets {i ∈ N; ‖T ix−T iy‖ ≥ ε} and {i ∈ N; ‖T ix−T iy‖ < t}
are equal to 1. The set D is called a distributionally ε-scrambled set.

We answer in the negative the question of whether hypercyclicity is sufficient
for distributional chaos for a continuous linear operator (we even prove that the
mixing property does not suffice). Moreover, we show that a extremal situation
is possible: There are (hypercyclic and non-hypercyclic) operators such that the
whole space consists, except zero, of distributionally irregular vectors.
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We extend results of Caffarelli-Silvestre and Stinga-Torrea regarding a character-
ization of fractional powers of differential operators via an extension problem.
Conversely, a solution to the extension problem is given in terms of the fractional
power. Our main result applies to generators A of integrated semigroups, in par-
ticular to operators with purely imaginary symbol. We also give a result on the
growth of perturbated tempered α-times integrated semigroups, that could be of
independent interest.
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First, we present a short introduction to an ergodic approach to chaotic systems
based on [1]. The main idea is to show that a semiflow possesses an invariant
mixing measure positive on open sets. From this it follows that the system is
topological mixing and its trajectories are turbulent in the sense of Bass. Then we
present two cell population models which lead to chaotic systems. The first one
[2] describes the evolution of maturity of blood cells in the bone marrow and is
given by a partial differential equation. The equation generates a semiflow acting
on densities (i.e. integrable functions with the integral one). Next, we consider a
classical structured model of cells reproduction system [3] given by a partial dif-
ferential equations with a non-local division term. This equation generates semi-
flows acting on some subspaces of locally integrable functions. We show that our
semiflows are isomorphic to the shift semiflow f(x) = f(x + t) on properly cho-
sen spaces of functions Y . The second step is to construct a mixing and invariant
measure m supported on the space Y . We can do it, if we find a Gaussian process
with trajectories from the space Y . Then the measure m of a Borel subset A of Y
is the probability that trajectories of the process are from the set A. It should be
noted that most of the recent papers concerning chaos for semigroups of oper-
ators are based on studying spectral properties of their infinitesimal generators.
This approach seems to be easier than ours. But, in our opinion, the approach
based on the isomorphism with shift semigroups and using invariant measures
reveals why our semiflows are chaotic. The second advantage of the ergodic the-
ory approach is that we can prove much stronger results concerning chaos.
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Zeta functions and periodic entropy of
nonautonomous dynamical systems
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Periodic sequences of continuous self mappings on a compact topological space,
F = (fi)i∈N, are commonly regarded as periodic nonautonomous difference equa-
tions or deterministic periodic nonautonomous dynamical systems (periodic dy-
namical systems for simplicity).

The study of the periodic entropy, hper(F ), of a p-periodic dynamical system is
the main topic of this talk.

Special attention will be paid to the formula

hper(F ) =
hper(fp−1 ◦ · · · ◦ f1 ◦ f0)

p
, (1)

which, in contrast with topological entropy, fails in general.

Our main goal is to provide sufficient conditions in order to get the equality in
(1). Naturally the study of the analytic properties of the zeta function of F will
play a central role in this discussion.
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We will consider relations between small perturbations of non-chaotic au-
tonomous dynamical systems and the chaotic behavior of the non-autonomous
systems in which they are transformed.

This is made using a extended notion of Lyapunov exponents in non-autonomous
systems and that of chaoticity as equivalent to have sensible dependence on
initial conditions. As a first example we use the easy difference equation of first
order xn+1 = axn when we perturb the real parameter a and other examples
obtained perturbing the same parameter in the logistic equations of first and
second order xn+1 = axn(1− xn) and xn+1 = axn(1− xn−1).

Additionally we will study some relations between the stability and instability of
solutions of difference equations with the value of Lyapunov exponents (when
they exist), particularly with periodic perturbations or doubling periodic using
Jacobi functions. As a consequence, we will construct some pathological exam-
ples.
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Some dynamical properties such as transitivity, minimality, density of periodic
orbits, can be also studied for iterated function systems (IFS). Blending regions
are introduced as open sets which are minimal sets for an IFS under small C1-
perturbations. Duminy’s Lemma shows examples of blending regions for an IFS
generated by two maps on the real line close enough to the identity. An extension
of this lemma allows us to study the dynamics of IFS of generic diffeomorphisms
on the circle close enough to the identity. As in the Denjoy’s Theorem, no invari-
ant minimal Cantor sets appear under conditions of regularity in the IFS. In this
setting, it is characterized when S1 is a minimal set of an IFS and it is obtained an
spectral decomposition result about of the dynamic of the limit set of an IFS.
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Cournot–Puu oligopoly is a market consisting on n firms producing the same, or
perfect substitutes, goods with demand function p = 1/Q, where p is the price,
Q = q1 + ... + qn is the total output and qi is the output of firm i. We consider
constant marginal costs ci for each firm i, which implies that cost functions are
Ci = ciqi for i = 1, ..., n. Under naive expectations, each firm will plan its produc-
tion at time t+ 1 as

qi(t+ 1) = fi(Qi(t)) = max
{

0,
√
Qi(t)/ci −Qi(t)

}
,

where Qi = Q − qi is the residual supply and fi is the reaction function of each
firm. In this talk we summarize the dynamics in duopoly case, that is, when n = 2
(see e.g. [2, 1]) and analyze some phenomena of interest from the point of view of
economic dynamics like conditions which guarantees the disappearing of firms
in the market.
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2 Departamento de Mathemáticas, Universidad de Murcia, 30100–Murcia, SPAIN.
E-mail address: balibrea@um.es

We are dealing with the existence of chaos, in the Li-Yorke sense, in rational
difference equations. This problem arise, for example, when we apply the New-
ton’s method to polynomials obtaining rational difference equations of order one.

In the paper we review ideas and results from Marotto in [1] based on a subtle
study of the dynamics near a special kind of equilibrium (snap-back repeller). We
find that some of them remain true in the non-continuous setting, for example
in rational difference equations , and how some others can be proved via the
introduction of an additional condition, what we call the compact pre-image
property.

As applications, we estimate numerically the snap-back repellers of the families
xn+1 = 1

x2n−c
(inverse parabolas) and xn+1 = 1

rxn(1−xn) (inverse logistic equations). Such
estimations are obtained using the basins of attraction, in C, of the reciprocal dif-
ference equations. Additionally we use them to estimate also their forbidden sets.
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On cascades of elliptic periodic points in
area-preserving maps with homoclinic tangencies

MARINA GONCHENKO

(in collaboration with A. Delshams and S. Gonchenko)

Departament de Matemàtica Aplicada I,
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We use qualitative and topological methods to study the orbit behaviour near
nontransversal homoclinic orbits in area-preserving maps which are not neces-
sarily orientable. Let f0 be such Cr-smooth map (r ≥ 3) having a saddle fixed
point O whose stable and unstable invariant manifolds have a quadratic tan-
gency at the points of some homoclinic orbit Γ0. Let fε be a family (unfolding)
of area-preserving maps containing the map f0 at ε = 0.

Our aim is to study bifurcations of the so-called single-round periodic points in
the family fε. Every point of such an orbit can be considered as a fixed point of
the corresponding first return map. We study bifurcations of the fixed points and
prove the existence of cascades of generic elliptic periodic points for one and two
parameter unfoldings fε. Thus, we generalize the results obtained in [1] where
only the symplectic (area-preserving and orientable) case was analyzed.
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Dense orbits of flows and maps — misunderstandings
and new results
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Existence of dense orbit (topological transitivity) or a stronger property of every
orbit being dense (topological minimality) belong to the core questions of topo-
logical dynamics. In this talk I discuss these notions for continuous as well as
discrete time systems in a general setting without assuming compactness of the
underlying space.

Besides well known results, there are common and frequent misunderstandings
related to the mentioned two properties. In the talk I briefly mention a few of
them and then proceed to the main part of the talk - new results from the joint
paper with L’ubomı́r Snoha, see [1]. Among others, I present results relating den-
sity of orbits of flows and corresponding t-maps, and density of full orbits versus
density of forward or backward semi-orbits.
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On some properties of discrete dynamical systems on
dendrites
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We consider some properties of discrete dynamical systems on compact metric
spaces, such as positive topological entropy, the existence of a horseshoe, Lya-
punov stability on the set of periodic points or the existence of a homoclinic tra-
jectory. Here we survey the relations between the properties in case of systems on
dendrites.
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and their interior periodic points
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Consider the plane triangle

∆ = { [x, y] : 0 ≤ x, 0 ≤ y, x+ y ≤ 4 }

and the map
F : ∆→ ∆, [x, y] 7→ [x(4− x− y), xy] .

(We denote by [x, y] a point in the plane, while (α, β) and 〈α, β〉 are open and
closed intervals on the real line.) In [4] A. N. Sharkovskiı̌ formulated some prob-
lems about properties of a map which is conjugated with the map F . This map
was studied in [1, 2, 3, 5] and is called a Lotka-Volterra map (in [1, 2, 3]). It is easy
to show that a point P = [x, 0] ∈ ∆ is a periodic point of the map F if and only if
x = 4 sin2 kπ

2n±1 , where n ≥ 1 and k are integers with 0 ≤ 2k < 2n± 1. We are inter-
ested in interior periodic points of the map F . Our main result of [3] is a relation
between lower and interior periodic points. Namely, if a point [4 sin2 kπ

2n±1 , 0] is a
saddle point of the map F n then there is a interior periodic point with the same
itinerary with respect to the sets

∆L = {[x, y] : 0 ≤ x < 2 , 0 ≤ y ≤ 4− x}

and
∆R = {[x, y] : 2 < x ≤ 4 , 0 ≤ y ≤ 4− x} .

We extend this result for modifications of the map F which are defined as fol-
lows. Assume that for any x ∈ (0, 4) we have an increasing homeomorphism ϕx
of the interval 〈0, 4 − x〉 onto itself. Moreover let the function ϕ(x, y) = ϕx(y) be
continuous in the domain

∆̂ = { [x, y] : 0 < x < 4 , 0 ≤ y ≤ 4− x} .
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Let G : ∆→ ∆ be defined by

G[x, y] =

{
[0, 0] if x = 0 or x = 4 ,

[x(4− x− ϕ(x, y)), xϕ(x, y)] otherwise.

Then the map G is called a modified Lotka-Volterra map. Note that F [x, 0] =
G[x, 0] for all x ∈ 〈0, 4〉. We construct two modifications G for which all lower
fixed points of the map Gn are repulsive and saddle points respectively. We give
an example of a modification G such that for any n ≥ 1 all repulsive lower fixed
points of the map F n are saddle points of Gn and vice versa.
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Average shadowing properties generalize standard shadowing properties (e.g.
shadowing, limit shadowing) by considering averages of errors in consecutive
steps of pseudo-orbit rather than ordinary error in each step. This modification
enables application of average shadowing in dynamical systems where we cannot
control error in each step, but we can ensure that average error is sufficiently
small. In particular, there are maps with average shadowing property but without
shadowing property.

In this talk we will survey recent results on average shadowing properties. We
will present a few sufficient conditions that ensure average shadowing and com-
ment on relations between average shadowing and notions from topological dy-
namics, like shadowing property, mixing, specification, proximality and the like.
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Renormalization group ideas are important for describing universal properties
of different routes to chaos: period-doubling in unimodal maps, quasiperiodic
transitions in circle maps, dynamics on the boundaries of Siegel disks, destruc-
tion of invariant circles of area-preserving twist maps, etc. The universal scaling
exponents for each route are related to the properties of the corresponding renor-
malization operators.

In [1, 2], we proposed the Principle of Approximate Combination of Scaling Exponents
(PACSE) that organizes the scaling exponents for different transitions to chaos.
Roughly speaking, if the combinatorics of a transition is a composition of two
simpler combinatorics, then the scaling exponent of this transition is approxi-
mately equal to the product of the scaling exponents corresponding to the two
simpler transitions. In [1, 2], we stated PACSE quantitatively as precise asymp-
totics of the scaling exponents for the combined combinatorics, and gave convinc-
ing numerical evidence for it for the four dynamical systems mentioned above.

We propose an explanation of PACSE in terms of the dynamical properties of the
renormalization operators—in particular, as a consequence of certain transversal
intersections of the stable and unstable manifolds of the operators correspond-
ing to different transition to chaos. As an essential ingredient in this picture, we
prove [3] a general shadowing theorem that works for infinite dimensional dis-
crete dynamical systems that are not necessarily invertible (which is the case of
the renormalization operators acting in appropriate function spaces).
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The notion of recurrence plays a fundamental role in the theory of dynamical sys-
tems. A powerful way for visualization of recurrence, called recurrence plot, was
introduced by Eckman, Kamphorst and Ruelle in 1987. A few years later, Zbilut
and Webber established the recurrence quantification analysis (RQA) by intro-
ducing measures of complexity, such as recurrence rate or determinism. Since
then, RQA proved to be useful in a wide area of disciplines, ranging from life and
earth sciences, engineering, material sciences, finance and economics, to chem-
istry and physics.

In the talk we introduce asymptotic RQA characteristics and we show their basic
properties. Then we focus on the determinism and its relationships to various
properties of dynamical systems. We also present some examples with nontrivial
determinism.
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Bystrica, Slovakia.
E-mail address: Zuzana.Ulicna@umb.sk
2 Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská
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We will talk about minimal sets of dynamical systems defined on a continuum
with a free interval, i.e. with an open subset homeomorphic to the open interval
(0, 1). Dirbák et al. showed in [1] that every minimal set M intersecting a free
interval J is either a finite set or a finite union of disjoint circles or a nowhere
dense cantoroid. We prove that such a minimal set must satisfy a property, which
we call J-clipping (i.e. there is an arc in J containing M ∩ J). As an application of
this result we obtain a topological characterization of minimal sets on the Warsaw
circle.
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The talk will consists of two independent parts. Firstly we will speak on some
qualitative properties of sensitive topological dynamical systems. Some results
from a joint paper with Oleksandr Rybak will be presented. In the second part
we will consider some induced dynamical systems, in particular we will speak
on ω-limit sets of induced triangular maps (based on a joint work with Damoon
Robatian) and on the topological entropy of functional envelope of some dynam-
ical systems (based on a joint work with Iuliia Semikina).
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Anosov diffeomorphisms on surfaces
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We consider a hyperbolic matrix

Ã =

(
a b
c d

)
∈ GL(2,Z)

and the hyperbolic toral automorphism A : T → T induced by Ã, where T =
R2/Z. Then Ã has two eigenvalues λ and µ such |λ| > 1 and |µ| < 1. Furthemore,
γ = |µ| is a quadratic surd and the continued fraction expansion of γ = 1/(a1 +
1/(a2 + 1/ . . .)) is M -periodic, for some M = M(γ) ∈ N.

We prove the existence of a one-to-one correspondence between C1+ conjugacy
classes of C1+ Anosov diffeomorphisms G that are topologically conjugate to A
and pairs of C1+ stable and unstable self-renormalizable sequences.
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We show that for a specific class of random matching Edgeworthian economies,
the expectation of the limiting equilibrium price coincides with the equilibrium
price of the related Walrasian economies. This result extends to the study of
economies in the presence of uncertainty within the multi-period Arrow-Debreu
model, allowing to understand the dynamics of how beliefs survive and propa-
gate through the market.
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It was stated by [7] (see also [3] page 237) that the oligopoly model produced
under constant marginal costs with a linear demand function is neutrally stable
for three competitors and unstable for more than three competitors. As discussed
in [6], linear demand functions are very easy to use, but they do not avoid neg-
ative supplies and prices, so it is possible to use them only for the study of local
behavior. This problem can be solved by using nonlinear demand functions such
as piecewise linear functions or other more complex functions, one of which was
suggested by [4] for a duopoly and later by [5] for a triopoly using iso-elastic de-
mand functions. These types of demand function were later studied by [1] and
[2] for a nonlinear (iso-elastic) demand function and constant marginal costs and
it was concluded that this Cournot model for n competitors is neutrally stable if
n = 4 and is unstable if the number of competitors is greater than five (see also
[6]).

The main aim is to consider Cournot points and discuss their stability while the
number of players is increasing for the model with an iso-elastic demand function
and under the assumption that the firms’ costs are identical. The terminology of
dynamical systems is used, that is the Cournot point is identified as a fixed one.
Finally, it is proved that for identical unit costs the Cournot point is a sink for two
or three competitors and a saddle for more than four players.
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We consider an international trade economical model where two firms of differ-
ent countries compete in quantities and can use three different strategies: (i) re-
peated collusion, (ii) deviation from the foreigner firm followed by punishment
by the home country and then followed by repeated Cournot, or (iii) repeated
deviation followed by punishment. In some cases (ii) and (iii) can be interpreted
as dumping. We compute the profits of both firms for each strategy and we char-
acterize the economical parameters where each strategy is adopted by the firms
(see also [1]).

References

[1] N. Banik, F. A. Ferreira ,J. Martins, A. A. Pinto, An Economical Model For
Dumping by Dumping in a Cournot Model, Dynamics, Games and Science II,
eds: M. Peixoto, A. A. Pinto and D. Rand. Proceedings in Mathematics series,
Springer-Verlag (2011), 141-153.

166

jmmartins@ipleiria.pt
aapinto1@gmail.com


Special Session: Economic Dynamics and Control

Cournot duopoly games with heterogeneous players
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The main aim of this paper is to analyze the dynamics of nonlinear discrete-time
maps generated by duopoly games in which players are heterogeneous and the
reaction functions are non-monotonic and asymmetric. We discusses here two
cases: in the first one we introduce games with boundedly rational players and
in the second one games with adaptive expectations. The dynamics and the topo-
logical entropy are mainly analyzed by numerical simulations. There are always
multiple equilibria, and the significance of the Nash equilibria is pointed out.

167

diana.mendes@iscte.pt
vivaldo.mendes@iscte.pt


Special Session: Economic Dynamics and Control

Rational Bubbles and Economic Policy

VIVALDO M. MENDES1, DIANA A. MENDES2

1 Department of Economics, ISCTE-IUL, Instituto Universitário de Lisboa and BRU-
IUL, Avenidas das Forças Armadas, 1649-026–Lisbon, Portugal.
E-mail address: vivaldo.mendes@iscte.pt
2 Department of Quantitative Methods, ISCTE-IUL, Instituto Universitário de Lisboa
and BRU-IUL, Avenidas das Forças Armadas, 1649-026–Lisbon, Portugal.
E-mail address: diana.mendes@iscte.pt

We are living in dangerous times, hardly conceivable just fifteen years ago. Bub-
bles in the housing market in various countries, bubbles in the financial markets,
bank runs that put to the ground some of biggest international banks in no more
than a couple of days, panic in many sovereign bond markets (negative bubbles),
central banks running out of policy tools to manage monetary policy efficiently,
are just some of the features of the tormented world we are currently facing. Is this
world governed by irrational behavior? Or is it the case that such fantastic behav-
ior may arise from fully rational agents? In an influential review article, Stephen
Le Roy (2004) stated very clearly that ”under rational asset pricing, including
rational expectations, such biased expectations [bubbles, panic, bank runs] can-
not occur: absence of arbitrage implies that the expected (risk-adjusted and dis-
counted) gain on any security or portfolio is zero. Thus in this usage bubbles are
synonymous with irrationality.” In this paper, we analyze the dynamics of an as-
set pricing model subject to complete markets and rational expectations, firstly
developed by Aiyagari (1988). The model displays endogenous cycles and high
volatility even in the case of no exogenous shocks hitting the economy. Contrary
to the dominant view in economics and finance — ”the preliminary conclusion
seems to be that when endogenous fluctuations exist in optimizing models, the
associated policy advice is laissez-faire”, Bullard and Butler (1993) — we argue
that economic policy may lead to an increase in social welfare in such a context
by ruling out rational bubbles.
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Strategic optimization in R&D Investment
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We use d’Aspremont and Jacquemin’s strategic optimal R&D investment in a
duopoly Cournot competition model to construct myopic optimal discrete and
continuous R&D dynamics. We show that for some high initial production costs,
the success or failure of a firm is very sensitive to small variations in its initial
R&D investment strategies.
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Resort Pricing and Bankruptcy
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We introduce a resort pricing model, where different types of tourists choose be-
tween different resorts. We study the influence of the resort prices on the choices
of the different types of tourists. We characterize the coherent strategies of the
tourists that are Nash equilibria.We find the prices that lead to the bankruptcy
of the resorts and, in particular, their dependence on the characteristics of the
tourists.
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We study a dichotomous decision model, where individuals can make the de-
cision yes or no and can influence the decisions of others. We characterize all
decisions that form Nash equilibria. Taking into account the way individuals in-
fluence the decisions of others, we construct the decision tilings where the axes
reflect the personal preferences of the individuals for making the decision yes or
no. These tilings characterize geometrically all the pure and mixed Nash equilib-
ria. We show, in these tilings, that Nash equilibria form degenerated hystereses
with respect to the replicator dynamics, with the property that the pure Nash
equilibria are asymptotically stable and the strict mixed equilibria are unstable.
These hystereses can help to explain the sudden appearance of social, political
and economic crises. We observe the existence of limit cycles for the replicator
dynamics associated to situations where the individuals keep changing their de-
cisions along time, but exhibiting a periodic repetition in their decisions.
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In this talk, we study the role of different timing structures in economic mod-
elling. We focus on the models in which the various underlying timing structures
have some real-world interpretation and could be changed so that the desired
outcomes (like low inflation, balanced budgets etc.) prevail. A major example of
this phenomenon are rigidities in monetary-fiscal interactions.
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This paper presents Goodwin’s growth cycle model [1] in its discreet version
[2] that has been obtained by means of a non-standard Micken’s discretiza-
tion method. Based on explicit Neimark-Sacker bifurcation, normal form method
and center manifold theory [3], the system’s existence, stability and direction of
Neimark-Sacker bifurcation are studied. Numerical simulations are employed to
validate the main results of this work. Some comparison of bifurcation between
the discrete-time Goodwin model and its continuous-time system is given.
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Győri, István, 76

Hamaya, Yoshihiro, 101
Hartung, Ferenc, 77
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