A QRT-system of two order one homographic difference equations: conjugation to rotations, periods of periodic solutions, sensitiveness to initial conditions

GUY BASTIEN¹, MARC ROGALSKI²

¹ Institut Mathématique de Jussieu (Université Pierre et Marie Curie). *E-mail address:* bastien@math.jussieu.fr

² Laboratoire Paul Painlevé (CNRS and Université des Sciences et Technologies de Lille), and Institut Mathématique de Jussieu (Université Pierre et Marie Curie). E-mail address: marc.rogalski@upmc.fr

We study the QRT-system of order one homographic difference equations in $\mathbb{R}^{+^2}_*$

(1)
$$u_{n+1}u_n = 1 + \frac{d}{v_n}$$
 $v_{n+1}v_n = 1 + \frac{d}{u_{n+1}}$, for $d > 0$, $u_0 > 0$ $v_0 > 0$.

Using some tools presented in the references we prove the following results.

(1) The invariant $G(x,y) = x + y + \frac{1}{x} + \frac{1}{y} + \frac{d}{xy}$ has a strict minimum K_m at the equilibrium $L = (\ell, \ell)$ (where $\ell^3 - \ell - d = 0$), and so the solutions of (1) are permanent and L is locally stable. The orbit of a point $M_0 = (u_0, v_0) \in \mathbb{R}^{+2}_*$ is included in the positive component \mathcal{C}_K^+ of the cubic curve \mathcal{C}_K with equation (xy+1)(x+y) + d - Kxy = 0 passing through M_0 (for a unique $K > K_m$).

(2) With the use of the group law on the cubic C_K and with the use of Weierstrass' function \wp one can see that the restriction to C_K^+ of the map F defined on \mathbb{R}^{+2}_* by

$$F(x,y) = (X,Y)$$
, where $Xx = 1 + \frac{d}{y}$, $Yy = 1 + \frac{d}{X}$ with $F(u_n, v_n) = (u_{n+1}, v_{n+1})$

is conjugated to a rotation on the circle \mathbb{T} of an angle $2\pi\theta_d(K)$, where $\theta_d(K) \in]0, 1/2[$ is given explicitly by the ratio of two integrals. There is a non-empty open interval $I \subset]0, +\infty[$ such that for each $d \in I$ the map $K \mapsto \theta_d(K)$ is not one-to-one.

(3) The set of starting points with periodic orbits is dense in \mathbb{R}^{+2}_{*} , and the only integers which are not periods of some solution of (1) for some d > 0 are 2, 3, 4, 6 and 10.

(4) For every compact $\mathcal{K} \subset \mathbb{R}^{+2}_*$ not containing the equilibrium, it exists a number $\delta_{\mathcal{K}} > 0$ such that $F_{|_{\mathcal{K}}}$ has $\delta_{\mathcal{K}}$ -sensitiveness to initial conditions: in every neighborhood of $M \in \mathcal{K}$ it exists a point M' such that $||F^n(M) - F^n(M')|| \ge \delta_{\mathcal{K}}$ for infinitely many integers n.

References

- [1] Bastien G. and Rogalski M. *A biquadratic system of two order one difference equations: invariant, periods, sensibility to initial condition of the associated dynamical system,* to appear in Int. J. of Bifurcation and Chaos.
- [2] Bastien G. and Rogalski M. *Global behaviour of the solutions of Lyness' difference equation*, J. Difference Equations and Appl. **10**, (2004), 977-1003.