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Motivation

When studying polynomial differential systems one focuses on their degree.

One of the most important problems in the area is Hilbert 16th problem, that
has the degree as its only data:

H(2) = 4?, H(3) ≥ 13, H(n) ≥ n2 ln(n)

2 ln 2
for n large .

The higher the degree, the greater the variety and richness of behaviors.

But for some simple equations, the degree is no so decisive when studying
the number of limit cycles.
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Main objective of the talk

Analyzing the role of monomials in the generation of limit cycles in systems
of low dimension.

We will focus on equations in the complex plane of the form

ż = azk z̄l + bzmz̄n, (1)

with z ∈ C, k, l,m, n ∈ Z+ ∪ {0}, 0 ≤ k + l < m + n, and a, b ∈ C\{0}

and on equations in the cylinder of the form

ẋ = A(t)xm + B(t)xn, (2)

with x ∈ R, m, n ∈ Z+ \ {1}, and A(t),B(t) trigonometric functions.
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Definitions

A simple critical point is a critical point for which the determinant of its
associated Jacobian matrix is nonzero.
A periodic orbit γ(t) is a solution for which there exists T ∈ R+ such
that γ(T + t) = γ(t), for all t.

A center is a critical point, in the planar case, or a periodic orbit, in the
case of the cylinder, having a neighborhood such that all the solutions
are periodic.
A limit cycle is an isolated periodic orbit.
In the analytic setting, limit cycles are periodic solutions that are
isolated in the set of all the periodic orbits of the equation.
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What is known in the complex plane

One monomial case
Consider

ż = azk z̄l,

z ∈ C, k, l ∈ Z+ ∪ {0} and a ∈ C\{0}.
The equation with one monomial does not have limit cycles.

Three monomial case

ż = az + bzk z̄l + czmz̄n,

z ∈ C, k, l,m, n ∈ Z+ ∪ {0}, 0 ≤ k + l < m + n, and a, b, c ∈ C\{0}.
For each 3 ≤ p ∈ N there exists an equation with three monomials of the
above type having at least p limit cycles, see [Gasull-Li-Torregrosa].
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ż = az + bzk z̄l + czmz̄n,

z ∈ C, k, l,m, n ∈ Z+ ∪ {0}, 0 ≤ k + l < m + n, and a, b, c ∈ C\{0}.
For each 3 ≤ p ∈ N there exists an equation with three monomials of the
above type having at least p limit cycles, see [Gasull-Li-Torregrosa].
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The two monomial case in the complex plane

We have studied the family

ż = azk z̄l + bzmz̄n, (1)

with 0 ≤ k + l < m + n, and a, b ∈ C\{0}.

Equation (1) written in x = Re(z), y = Im(z) variables is not as simple.

For instance: ż = az3 + bzz̄3 is{
ẋ = b1x4 − b1y4 + 2b2x3y + 2b2xy3 + a1x3 − 3a1xy2 − 3a2x2y + a2y3,
ẏ = −2b1x3y− 2b1xy3 + b2x4 − b2y4 + 3a1x2y− a1y3 + a2x3 − 3a2xy2.
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The two monomial case in the complex plane

Equation (1), written in (x, y) variables is the sum of two homogeneous
vector fields {

ẋ = Pp(x, y) + Pq(x, y),
ẏ = Qp(x, y) + Qq(x, y),

Pi,Qi being homogeneous polynomials of degree i.

There is no upper bound for the number of limit cycles for the previous
family of equations. For instance, for p = 1, q = n odd, there exist vector
fields of the above form having n+1

2 limit cycles.
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The two monomial case in the complex plane

Theorem (MJA - A. Gasull - R. Prohens)

The differential equation

ż = azk z̄l + bzmz̄n, (1)

with 0 ≤ k + l < m + n, and a, b ∈ C\{0}, has at most one limit cycle and it
exists if and only if k − l = m− n = 1, Re(a) Re(b) < 0 and a/b 6∈ R−.
Moreover, it is the circle x2 + y2 = (−Re(a)/Re(b))n−l and it is hyperbolic.
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Ideas of the proof of the main theorem of the planar
equation: ż = azkz̄l + bzmz̄n

Characterizing the critical points

Set q = l− k + m− n. Then:
The origin is a critical point if and only if k + l > 0. Its index is k − l
and it has 2(k − l)− 2 elliptic sectors when k − l > 1, it is a node,
focus or center when k − l = 1, and it has 2|k − l|+ 2 hyperbolic
sectors when k − l ≤ 0.
If q 6= 0, it has |q| nonzero simple critical points, and all of them are
located on a circle centered at the origin. When q > 0 (resp. q < 0) all
them are anti-saddles (resp. saddles).
If q = 0 and a/b ∈ R−, it has a circle centered at the origin filled with
critical points.
If q = 0 and a/b 6∈ R−, it does not have nonzero critical points.
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Ideas of the proof of the main theorem of the planar
equation: ż = azkz̄l + bzmz̄n

The main difficulty is proving that most cases do not have limit cycles.

There can exist two kind of limit cycles:

(I) the ones surrounding a nonzero critical point of index +1.

(II) The ones surrounding the origin and, eventually, also other critical
points.
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(I) Limit cycles surrounding a nonzero critical point of
index +1: : ż = azkz̄l + bzmz̄n

With a result about Rotated Vector Fields, one rules out (I) possibility.

Proposition (RVF)

Let the origin be a center for a smooth differential equation ż = iF(z, z̄) and
let U be its period annulus.
Then for δ 6∈ {π/2,−π/2} the differential equation ż = eiδF(z, z̄) has not
periodic orbits intersecting the set U . Moreover, if F is analytic it does not
have periodic orbits surrounding only the origin.

Equation (1) can be transformed into

ż = eδi((z + 1)k(z̄ + 1)l − (z + 1)m(z̄ + 1)n).
This equation has a center for δ ∈ {π/2,−π/2} ⇒ no limit cycle exist for
any δ.
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(II) Limit cycles surrounding the origin and, eventually, also
other critical points: ż = azkz̄l + bzmz̄n

a) With a generalization of a result about quadratic systems, one rules out
the case k − l even or m− n even.

Proposition

Consider the differential equation

ż = XN(z, z̄) + XM(z, z̄), 0 ≤ N < M,

where, Xj is a homogeneous vector field of degree j in the variables z and z̄.
If one of the following conditions hold:

(i) The differential equation ż = XN(z, z̄) has an invariant straight line through the
origin and M is even,

(ii) The differential equation ż = XM(z, z̄) has an invariant straight line through the
origin and N is even,

then it does not have periodic orbits surrounding the origin.
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(II) Limit cycles surrounding the origin and, eventually, also
other critical points: ż = azkz̄l + bzmz̄n

b) k − l and m− n odd, by symmetry arguments, if a limit cycle exists, it
surrounds only the origin (and hence k − l = 1) or it surrounds all the
critical points (m− n = 1). If one is different from 1, then Proposition
on RVF applies and no limit cycles exist.

c) k − l = m− n = 1 the system can have a circle of critical points
(a/b ∈ R−) or not (a/b 6∈ R−). If it has it, eliminating it the system
becomes homogeneous and no limit cycle can exist.
If the system does not have a circle of critical points, then it has a limit
cycle if and only if Re(a) Re(b) < 0.
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Examples

The equation ż = (−1 + I)z2z̄− z4z̄3, that in x, y variables writtes as
{

ẋ = b1x7 + 3b1x5y2 + 3b1x3y4 + b1xy6 − b2x6y − 3b2x4y3 − 3b2x2y5 − b2y7 + a1x3 + a1xy2 − a2x2y − a2y3,
ẏ = b1x6y + 3b1x4y3 + 3b1x2y5 + b1y7 + b2x7 + 3b2x5y2 + 3b2x3y4 + b2xy6 + a1x2y + a1y3 + a2x3 + a2xy2,

has a unique limit cycle surrounding the origin if a/b 6∈ R− and a1/b1 < 0.
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Byproduct: the center-focus problem

Theorem
For equation

ż = azk z̄l + bzmz̄n, (1)

set q = l− k + m− n. Then, the following holds:

(i) When m− n = 1 the origin is a center if and only if k − l = 1 and
Re(a) = Re(b) = 0.

(ii) When m− n 6= 1 the origin is a center if and only if k − l = 1 and
Re(a) = 0.

(iii) It has a nonzero center at z = Reiψ if and only if the point has index +1
and the divergence vanishes at this point. More concretely, if and only
if q > 0 and Re(aei(k−l−1)ψ) = 0. This later condition is equivalently
to Re(bei(m−n−1)ψ) = 0.

Moreover all centers are reversible.
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M.J. Álvarez (Universitat de les Illes Balears) Differential equations with few monomials



Introduction
Equation in the plane

Equation in the cylinder
Conclusions

What is known
What we have proved

What about the degree?

ż = azk z̄l + bzmz̄n, (1)

Nor the lower degree, k + l, nor the higher degree, m + n, plays a role in
solving the problem.
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What is known in the cylinder: simplest cases

Consider ẋ = f (t, x) being f periodic in t and polynomial in x. Let
n = deg(f ) in x variable.

What is known

Linear case (n = 1): the number of limit cycles is ≤ 1.
Riccati case (n = 2): the number of limit cycles is ≤ 2.
Abel case (n = 3): for each p ∈ N there are trigonometric functions
A(t),B(t), such that the equation

ẋ = A(t)x3 + B(t)x2

has p limit cycles.
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Approaches to the n ≥ 3 case.

Consider the generalized trigonometric Abel equation

ẋ = A(t)xm + B(t)xn, (2)

m > n ≥ 2.

Strategies to bound the number of limit cycles

Bounding the functions |A(t)|, |B(t)|.
Fixing signs of the functions A(t),B(t).

Fixing the degree of the trigonometric polynomials A(t),B(t). Open
problem even for degree 1.
Studying the effects of the trigonometric monomials.
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Effect of the trigonometric monomials

If A1, . . . ,Al,B1, . . . ,Bp, are trigonometric monomials, we write eq. (2) as

ẋ =

(
l∑

k=1

akAk(t)

)
xm +

( p∑
k=1

bkBk(t)

)
xn, (2)

where A(t) = sinik t cosjk t,Bk = sinuk t cosvk t.

Denote byH the Hilbert number of Eq. (2), i.e., the supremum (it could be
infinite) over the set of coefficients (a1, . . . , al, b1, . . . , bp) ∈ Rl+p of its
number of limit cycles.

Observe that x = 0 is always a periodic orbit of Equation (2).
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The context of our problem

The center problem

The caseH = 0 is the center problem (every bounded solution is periodic
for all coefficients ak, bk).

Uniqueness of limit cycle

H = 1 means that, for any ak, bk the origin is the only limit cycle, except for
some of them, for which it is a center, i.e. if equation (2) has a limit cycle it
must be the trivial one.

Non-uniqueness of limit cycles

H ≥ 2 means that there exist some values of ak, bk such that equation (2) has
a non-trivial limit cycle.
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M.J. Álvarez (Universitat de les Illes Balears) Differential equations with few monomials



Introduction
Equation in the plane

Equation in the cylinder
Conclusions

What is known
What we have proved

The context of our problem

The center problem

The caseH = 0 is the center problem (every bounded solution is periodic
for all coefficients ak, bk).

Uniqueness of limit cycle

H = 1 means that, for any ak, bk the origin is the only limit cycle, except for
some of them, for which it is a center, i.e. if equation (2) has a limit cycle it
must be the trivial one.

Non-uniqueness of limit cycles

H ≥ 2 means that there exist some values of ak, bk such that equation (2) has
a non-trivial limit cycle.
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Notation

ẋ =

(
l∑

k=1

ak sinik t cosjk t

)
xm +

( p∑
k=1

bk sinuk t cosvk t

)
xn. (2)

S = {sini(t) cosj(t) : i odd, j even}

C = {sini(t) cosj(t) : i even, j odd},

E = {sini(t) cosj(t) : i, j even},

O = {sini(t) cosj(t) : i, j odd}.
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Few monomials result

Consider the generalized trigonometric Abel equation

ẋ = A(t)xm + B(t)xn =

(
l∑

k=1

akAk(t)

)
xm +

( p∑
k=1

bkBk(t)

)
xn, (2)

m > n ≥ 2.

Lemma (MJA - J.L. Bravo - M. Fernández)

In order to characterize the center problem and the uniqueness or
non-uniqueness of limit cycles of the generalized trigonometric Abel
equation (2) is enough with studying the equation

ẋ = (a1A1(t) + a2A2(t))xm + (b1B1(t) + b2B2(t))xn,

with Ak(t) = sinik t cosjk t,Bk(t) = sinuk t cosvk t.
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Reduction of the problem

Consider

ẋ = A(t)xm + B(t)xn. (2)

ẋ = (a1A1(t) + a2A2(t))xm + b1B1(t)xn, (3)

ẋ = (a1A1(t) + a2A2(t))xm + (b1B1(t) + b2B2(t))xn. (4)

To study the problemsH = 0,H = 1,H ≥ 2, for Equation (2) it is enough
to study Equations (3) and (4).

If equation (3) has a non-trivial limit cycle then it will also exist for
equation (2).
If equation (3) does not have a non-trivial limit cycle then we have to
study equation (4).
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Main result in the cylinder for generalized Abel equation

ẋ =

(
l∑

k=1

akAk(t)

)
xm +

( p∑
k=1

bkBk(t)

)
xn. (2)

Theorem (MJA - J.L. Bravo - M. Fernández - R. Prohens)

Consider equation (2) not including (SOCO) family.

1 H = 0 if and only if Ai,Bj ∈ S ∪ O (resp. C ∪ O) for any 1 ≤ i ≤ l,
1 ≤ j ≤ p.

2 H = 1 if and only if one of the following conditions holds:
a A1 ∈ E and Ai,Bj ∈ S ∪ O (resp. C ∪ O) for any 2 ≤ i ≤ l, 1 ≤ j ≤ p.
b l = p = 2, A1 = B1, A2 = B2, A1 ∈ S and A2 ∈ C.
c p = 1, B1 ∈ E , and Ai 6∈ E , 1 ≤ i ≤ l.
d p = 1, B1 ∈ C, A1 ∈ S, and A2, . . . ,Al ∈ C ∪ O.
e p = 1, B1 ∈ S, A1 ∈ C, A2, . . . ,Al ∈ S ∪ O.
f p = 1, B1 ∈ O, A1 ∈ S, A2 ∈ C, A3, . . . ,Al ∈ O.

3 H ≥ 2 otherwise.
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Ideas of the proof
Steps of the proof

Determine all the sets {Ak,Bk} for which there exist coefficients ak, bk

such that Eq. (2) has a non-trivial limit cycle.
Prove that for each of the remaining sets {Ak,Bk} none of the equations
inside the family (2) has a non-trivial limit cycle.

Techniques used

Lyapunov constants.
Hopf bifurcation.
Moment characterization of centers: if x = 0 is a center then∫ 2π

0
A(t) (IB(t))j dt = 0 for every j ∈ Z+.

Monotonicity of the solutions.

We use only symmetries of the functions Ak,Bk.
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The ruled out SOCO family

Consider the following family,

ẋ = (a1A1(t) + a2A2(t)) xm + (b1B1(t) + b2B2(t)) xn,
S O C O

Theorem
Let us consider the SOCO equation with an additional technical hypothesis
(H). There exist a1, a2, b1, b2 such that the equation has non-trivial limit
cycle (an Alien one).

d
dt

(
ln

A2(t)
B2(t)

)
∈ R ⇐⇒ A2(t)

B2(t)
∈ (0,∞). (H)
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Conclusions

ż = azk z̄l + bzmz̄n, (1)

has at most 1 limit cycle, independently of the degree,

ẋ = A(t)xm + B(t)xn, (2)

the existence of limit cycles can be characterized independently of the
degree (of both, x and the trigonometric polynomials).

Summarizing

For some simple equations or systems the degree is not decisive.
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