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@ The standard Hurwitz (Riemann) zeta function

1
Cals) == JZ(:) Grap @ 0, Re(s) > 1

converges absolutely for Re(s) > 1
meromorphically extendable to C\ {1}

single pole at 1 with residue Res({,(s),s =1) =1
for a = 1: the Riemann zeta function
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'Geometric generalizations' - fractal zeta functions in

the sense of Lapidus

o L:={l;: jeN}
a disjoint union of intervals on the real line with lengths /;

(1) The geometric zeta function of a fractal string (Lapidus,
Frankenhuijsen, 2000)

[e.@]
Ce(s) = Zﬁj, s € C, s.t. the sum converges absolutely
j=1

*x U= % standard zeta function
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(2) The distance zeta function of a bounded set A C RY
Cals) ::/ d(z, AN da
As

e > 0 inessential (up to a holomorphic function)

(3) The tube zeta function of a bounded set A C RY:
o the tube function of A:

e+ Va(e) :=|Ac| (the Lebesgue measure)
o Va(e) ~ MeN=5 ¢ - 0 = dimp(A) = s, M*(A) = M.

4
EA@g;:t/ 5Ny, (8) dt,

0
Re(s) > dimp(A), § > 0 inessential

(Lapidus, Frankenhuijsen 2000, 2006; Lapidus, Radunovi¢,
Zubrini¢, 2017)
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For fractal strings, all three equal up to a holomorphic
function

L= A:={aj: jeNo}, {j:=aj_1—a;

The functional equations on domains of definition (up to

holomorphic functions):
9N —s

® Cals) = =5—Cc(s),
o Ca(s) = 2+ Ca(s), Re(s) > dimp(A).
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Definition
Let
o ACRN bounded,
® Ca(s) admits the meromorphic extension to whole C.

The set of all poles is called the set of complex dimensions of A,

Q(A).

@ ((s) holomorphic for Re(s) > dimp(A),
e simple pole at s = dimp(A).
Complex dimensions (and their residues i.e. principal parts) talk

about the geometry of the set! Similarly as the tube function!

* The box dimension of the set is the first complex dimension, with
Minkowski content directly related to its residue!
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One example of a self-similar set: the ternary Cantor set

Example 1 (The complex dimensions of the ternary Cantor set,
LRZ 2017)

* viewed as a fractal string, the order of intervals not important

Cee(s) = 25216 = 2020 2" (k1) = gy I35l <1

@ holomorphic for Re(s) > logy 3 = dimp C

@ unique meromorphic extension to C by the above formula
with poles:

2km

Example 2 (The tube function of the Cantor set (LRZ 2017))

Ve(e) = 51_1°g32(G(—10g5) +0(1))), € = 0,

G a nonconstant periodic function.
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A conjecture (LRZ):
Strong oscillations in the first term indication of self-similarity;
non-real complex dimensions;

possible definition of fractality of a set as possessing non-real
complex dimensions?
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Complex dimensions vs. asymptotics of the tube function

(formally proven in LRZ, 2017)

* Ca the tube zeta function of set A C RN, meromorphically
extendable to C.
*x t > Va(t) = |4, t € (0,0), the tube function of A

o Cal(s) = M(x00)Va/idV)(s) = [ Va(t)tr— =N at
o Conversely,

tN

Valt) = 5 MU0 = o [ G s e 0.0)

2772

I"... a vertical line at around s = ¢, ¢>dimp A

* the basis is the residue theorem: the complex dimensions and
their residues correspond to asymptotic terms and their
coefficients in an asymptotic expansion of the tube zeta
function of the set
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Important ingredient for relating

The k-th primitive tube function Vf[‘k}, ke N:
Vi) == [T Va(s)ds, t € (0,6)...

Changing the order of integration, N > Re(s) > dimp A:

[k‘] 1 tN*S‘i’k -
Vi(t) = 27”/1“ 7(]\7—3—1—1)]{(‘4(3)6[8’ k € Np.
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* Heuristically, the residue theorem 'gives’ expansions of ¢ — V()

ort— Vf[lk] (t), k € N, from poles and residues of (4:

*e.g. Q4 = {wn, n €N} only first-order poles

(**) VA(t) = Zim‘/p thséA(s) ds =

c

= Z tN"“Res(Ca,w) + O(N+M) t -0, M € N.
w€Na, Re(w)>—M

(in case of higher-order poles logarithmic terms in the expansion)
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ldea of proof of (**) (LRZ)

e to get asymptotic remainder O(tN*+M), M € N, bounds
needed on zeta function along vertical lines Re(s) = —M,
M — o

@ so-called languidity bounds of Q:A(s) along vertical lines
§=0+14T,as T = 00

@ pointwise asymptotics as long as bounds rational
ICalo +iT)| ~ 777, > 0,7 = 00

@ polynomial bounds (v < 0) = only distributional
asymptotics (there exists some primitive of tube function
t— Vf[‘k]) that expands pointwise up to this term, but
differentiation of asymptotic expansions can be done just

distributionally!
therk od . .
° mCA(U +1i7), as T — +00, becomes rational for k

sufficiently big!
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Relation to dynamical systems
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Orbits of local diffeomorphisms (= germs) on the real line

R,

o (attracting) parabolic germ
f(z) =z —aa**! + ... € Diff(R4,0), a >0, k €N

—1/k P 5 S
aj ~J /7£]N.] koy ] — 00,

o (attracting) hyperbolic germ f(z) =Xz +...,0< A <1

aj~ N, L~ XN, j— oo
Orbit of f with initial point zg € (R4, 0):
Of(xo) :={an == fT"(x0) : n€Np}, g:=id— f
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Box dimension and Minkowski content of orbits

Zubrini¢, Zupanovi¢ 2005, MRZ 2012
@ a parabolic orbit of multiplicity k

1 k+1 1
Vo) (&) ~ (2/a) 1 2 =R 4.+ c{p, a)e(~ log )+

+o(e(—loge)), e =0,

dimp (07 (x0)) =1 - kil MO (o)) = (2/ayir F 1

@ a hyperbolic orbit
Vor(z)(€) ~ a(A) - (= loge) + o(e(—loge)), € — 0,
dimp(Of (20)) =1 -1 =0, M(Of(q)) = +o0,
Later: R [2013]
o formal class of f using asymptotic expansion of function

€ Voriag)(e), ase =0
o further (finitely many!) complex dimensions needed
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Orbits as fractal strings and complex dimensions:

parabolic case

oo ~*

JjeN
* holomorphic for Re(s) > kLH = dimp O/ (z0)

* however, too coarse approximations for meromorphic
extensions - info on poles and residues lost

* notation: (¢, (y, C~f
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Precise computations tedious even in the simplest model

case of germs, k =1, p = 0 (MRR 2020)

* Model cases with residual invariant p = 0 and multiplicity £ € N
* time-one maps of simple vector fields 2/ = —zF*1:

k+1d _ L

— k+1 k+1

fr(x) := Exp(z

Proposition (The complex dimensions of orbits, MRR 2020)

Cr.(s), Re(s) > k—f_l the distance zeta function of an orbit
Oy, (xo) of a model parabolic germ.

@ (s, (s) can be meromorphically extended to C,
@ the poles of (4, (s) located at % and at (a subset of) the set

—mk
k41

© the Minkowski (box) dimension of Oy, (x0) is D = k+1' the
only pole of (g, (s) with a positive real part

of points m € Ny, all simple
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Heuristical proof in the simplest model case k =1, p =0

Putting X := :co_l,

1 1 1 \!
E‘j: . . = 7 2" 1+ - 9
G+X)G+1+X) (+X) j+X

gﬁ?:#. <1+1>_S_
TG U
_ -8 1
_,;)<m)(j+X)28+M'

Heuristically (formal change of order of summation),

Cop(8) =D 657~ Y <;§>Cx(2s+m)- (1)

7=0 m=0

Complex dimensions: w,, := 177”, n € Ny, with residues:

Res(Cz;, ,wn) = (?1) Zero residue for n odd.
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What to do in the case p # 0 or even non-model case?

Arbitrary parabolic germ

f(z) =z — az®* 4 o(zF1) € Diff (R, 0)

Theorem B (MRR 2020, Complex dimensions for arbitrary

parabolic orbits)
f € Diff(R4,0), of formal class (k,p), k € N, p € R.
@ The distance zeta function (¢(s) can be meromorphically
extended to C.
@ In any open right half-plane Wy := {s > 1 — #rl} where
M eN, M > k+ 2, given as:
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Theorem B
Fors e Wyr:=={s>1— k—]\fl}

k
R+1
(_1)pp| i cm,p(.ﬁlfo)

m=k+2 p=0 (s -(1- kﬂﬂ)y+1

g(s) holomorphic in Wyy.

—_
V)

+ g(s),

x the coefficients in principal parts of poles real, with dependence on x,
as noted!

* related to the coefficients of the asymptotic expansion of the tube
function of the orbit!

* new wrt model: higher-order poles correspond to logarithmic terms
in the asymptotic expansion of the tube function due to p # 0

Maja Resman (with P. Mardesi¢, University of Burgundy, and G.



generalized asymptotic expansion of tube
function-coefficients oscillatory functions

Proposition (MRR 2020)

A generalized asymptotic expansion of the tube function with
full description of oscillatory coefficients:

1
Vi(e) ~2F+1a

k
1 k+1 1 _m_ k—1
s ceRFT E am - €FFT +2p A -eloge + bg41(xo)e+

k m=2
miaq 2641 |, 4
ok LElt+ . | =F= 1+ P
+ Z Z Cm,pe FFT logP e + Z Cok+41,p€ FTT logP e+
m=k+2 p=0 p=1

_ 2k+1 > - m
+ Pop1(G(7e)) - € *FT + Z Z Qm,p(G(7e)) - e*+T logPe, ¢ — 0.
m=2k+2 p=0

k
(%) € — Tc the so-called continuous critical time (MRRZ 2019), 7 ~ & F+1

(*) G : [0,+00) = R 1-periodic, G(s) =1 —s, s € (0,1), G(0) =0

%) Paiy1 resp. Qm.p, polynomials whose coefficients in general depend on
+ P

coefficients of f and initial condition xq.
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The model hyperbolic case

* Of(x0) = {zoA" : n € No},
* Lpi={l; = f9(z0) — foUTY(20) = mo(1 — AN : j € No},
* 1
R R S L |
Crls) = s jzogj N s 1— A8’

* extends meromorphically from {s € C: R(s) > 0} to C:
double pole sg = 0 and the simple poles:
2km

= k € Z.
Sk log)\l S

2 2e
Vf(g) = _log)\g(_logg) + H(log)\ m

H : [0,400) — R a 1-periodic bounded function.

)'57
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Parabolic orbits vs. hyperbolic orbits and fractality

@ the hyperbolic case: poles of zeta function as non-real
complex dimensions, similarly as for Cantor sets (LF 2013,
LRZ 2017), but in further terms

@ the parabolic case: no non-real complex dimensions

@ indication of self-similarity of hyperbolic orbits?
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