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Abstract

A complete analysis of the limit cycle bifurcation from infinity in 3D Relay systems,
which belong to the class of three-dimensional symmetric discontinuous piecewise
linear systems with two zones, is presented.

A criticality parameter is found, whose sign determines the character of the bifurcation.
When such non-degeneracy parameter vanishes, a higher co-dimension bifurcation takes
place, giving rise to the emergence of a curve of saddle-node bifurcations of periodic
orbits, which allows to determine parameter regions where two limit cycles coexist.

The theoretical results are applied to a specific family of 3D relay systems, where
several high co-dimension bifurcation points are detected, organizing the bifurcation
set of the family.
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Hopf Bifurcation from infinity in 3D relay systems

* The analysis of bifurcations from infinity cannot be forgotten in
order to get a complete overview of the dynamical behaviour to
be found in a given dynamical system.

* Within the realm of piecewise linear systems, such analysis
requires some adaptation of the usual techniques. Starting from
the closing equations method for the analysis of periodic orbits,
suitable reciprocal coordinates for their intersection points with
the discontinuity manifold are introduced.




Hopf Bifurcation from infinity in 3D relay systems

* In the specific case of 3D relay systems, we will show how the
analysis provides useful information about the limit cycle bifurcation

set, allowing to detect some parameter regions where one or more
limit cycles appear.

e This work is the extension to the discontinuous vector fields realm

of a similar analysis in symmetric piecewise linear systems with three
Zones:

Hopf bifurcation at infinity in 3D symmetric piecewise linear systems.Application to a Bonhoeffer—van der Pol oscillator

E. Freire, E. Ponce, |. Ros, E.Vela, A. Amador. Nonlinear Analysis: Real World Applications 54 (2020) 103112




Piecewise linear systems coming from control systems

U Y
Plant (linear)
Feedback (linear, but...)

state equations of the plant x = Ax + bu U
T
output from states Yy==0C X
input is a feedback of the output u = sat (y) /

% = Ax + bsat(c ' x)
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Canonical form for 3D relay systems

U Y
Plant (linear)
Feedback (linear, but...)

state equations of the plant x = Ax + bu
1
output from states y—C X
input is a feedback of the output U — Sign(X)

%x = Ax + bsign(c' x)
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Canonical form for 3D relay systems

For x = (x,y, Z)T c R3. we consider symmetric discontinuous 3D relay systems

x = Ax — by (¢ ' x)

where ¢ is the sign function. Here, the dot represents derivative with respect to the time 7,
the vector b = (b1, bs,b3)' € R? is constant, ¢ = e; (the first canonical vector of R?), and the
matrix A is in the generalized Liénard form

t —1 0
A=1m 0 -1],
d 0 0

where the coefficients ¢, m and d are the linear invariants (trace, sum of principal minors and
determinant) of the matrix.



Canonical form for 3D relay systems

In short, we have the piecewise linear, discontinuous system

. | FT(x)=Ax+Db, if z <0,
(D) X_F(X)_{F+(X):Ax—b, if x>0,

and the ambiguity in the definition of the vector field will be
not relevant as long as we only consider the crossing dynamics.

We have a symmetric discontinuous piecewise linear system with
two linearity zones separated by the plane ¥ = {x € R’ : x = 0}




Eigenvalue configuration near a center

We consider eigenvalue configurations for the matrix A near the
assoclated one to a center, that is, we assume that the eigenval-
ues of A are A\, 0 £ 1w with w > 0, and analyze the dynamical
effects of a sign transition for the real part 0. We suppose so
that the linear invariants satisty

t = 20 + A,
m = 20\ + 0~ + w?,
d=M\(c"+w).




Equilibrium points in 3D relay systems

When d # 0, or equivalently A # 0, there appears one equilibrium for
each vector field, namely

bs t m
XR — (ajR?yR? ZR) — A—lb — (_3 _b3 — b17 _b3 — b2> 9 XL — —XR.

d’ d d
If bsd is positive, then both equilibria are real; otherwise, when b3d is

negative the above equilibria are located out of the halt space whose
dynamics 1s ruled by them, and so they are called virtual equilibria.



The invariant focal planes organize the dynamics

There appears an invariant plane passing through each equilibrium point, usually called focal
plane. From such focal planes, only the half part with < 0 (z > 0) is invariant for F'~ (F'T),
and so we will speak of invariant focal halt-planes. For instance, if w denotes the left-hand
eigenvector associated to the real eigenvalue A\ # 0 of the matrix A, then the focal plane for xp
1S

w

X—XR):O,

or equivalently,

1
w xX=w xp=w'A'b= XWTb.

Effectively, the invariance of such a plane comes from the equality
wx=w (Ax—b)=Xw x—w b=0,

which 1s true for any point belonging to such a plane.



Any symmetric periodic orbit must intersect the discontinuity manifold > at two symmetrical
points, to be located between the intersections lines of the focal planes with >..



We can identify symmetric periodic orbits with the solutions of the closing equations

0 . 0
ALl yy | + / ebdu=| —yo
20 0 —Z0

But, how to work near infinity?




Regarding the stability of symmetric periodic orbits...

Proposition If I' is a symmetric periodic orbit of system (1) with only
two transversal crossing points pg = (0, yp, 20) € X and p1 = —pg € 2,
and ¢, 71, (Ygr, Tr) are the transition map and flight-time function in
the left (right) part of the orbit, then Dvyr(—yo, —20) = DvYr(yo, 20),

D1r(—y0, —20) = —D71r,(y0, 20), and the two matrices
Q) — ( 1 | D71r.(yo, 20) ) O — ( 1 | D7r(—y0, —20) >
0| DvYr.(yo,20) ) 0 | DYr(—yo, —20)
are similar. Moreover, if 77, is the half-period of the orbit, then we have
w0 O U b1 —yo O O
Qr= |22 —1 0 |e™ |by—2 -1 0

3 ) —1 bg 0 —1




Some preparatory work: decoupling the Z-dynamics

Proposition The scaling of time, variables and parameters
f=wr, T=x, y=wi, 2 =wZ, \=wu,oc=uwy, b = wgl, by = w21;2, by = wggg,

transforms the system into the form

7 X 27 + 1 -1 0 X b1
a0 = (2wt 1 0 —1f || —sen() | b
z w(y2+1) 0 0 /) \z b

The additional linear change of variables X =%, Y = ¢ — uZ, and Z = Z — uy + p°Z, produces

; X 27y —1 0 X 51
r: Y| =|7¥+1 0 -1 Y | —sgn(X) | B2 ],
7 0 0 u A 53

where 51 = 51, Ba = 52 — MEL and 3 = 53 — MEQ M251-




Some preparatory work: decoupling the Z-dynamics

Proposition The scaling of time, variables and parameters

~ ~ 2

0=wr, T=x, y=wWyY, 2 =wW2, A=wWU,T = WY, b1=w51, bzzwzgm 53:003537

transtforms the system into the form

e 2y+pu  —1 0\ (% by
70 gl =|2vyu+y*+1 0 -1 y | —sgn(x) | by
Z w(y*+1) 0 0/ \z bs

The additional linear change of variables X =%, Y = ¢ — uZ, and Z = Z — uy + p°Z, produces

7 0 C " 7 53 IS decouplea.

where [ = [;1, Bo = 52 — MEL and O3 = 53 — ,ng T M251-




Some preparatory work: decoupling the Z-dynamics

For the decoupled

a
6

the new focal planes become the horizontal planes Z = -

system
X 27y
Y| =|~+1
Z 0

the initial point must satisty

-1 0

Bs
v

v

< Zs

X
Y
A

Bs
v

— sgn(X)

B3

-— . an
v

b1
62 9
03

d the coordinate Z; ot

and so any symmetric periodic orbit, including anyone coming from or going to infinity,

1S bounded in the

hird coordinate.



Some preparatory work: decoupling the Z-dynamics

Solving separately the boundary value problem

dz
do

— ,uZ + 53, Z(O) — ZQ, Z(@L) — —Z(),

we get

that 1is,




For the first two variables, we get




The trick to work near infinity: ultimate closing equations

To work easily near the point at infinity, instead of Yy, we take ro = 1/Yj
as new variable. Consequently, atter such substitution and multiplying
by rg, we obtaln the reduced closing equations

ey () wrnc) @ (5 )4 50) =0

Lemma The above reduced closing equations with rg = 0 and
0 < 01, < 27 are only satisfied for 8; = m and v = 0.



An unbounded nonlinear isochronous center!

For v = 0 and #;, = 7, we have indeed e®?c + 1 = 0, so that, the reduced closing
equation becomes

o (( 51) b3 (—1 )): 210 ( (14 p?)B1 — B3 ):O
"\ B2 ) T2\ 1+ p2 \ (14 p2)B2 + ppBs |

Therefore, in the most degenerated situation, when the two parameters

6 =03 —P1(p* +1), €=pfs+ Ba(p®+1)

vanish, the reduced closed equations are satisfied not only for ro = 0 but also
for any value rg > 0, all the solutions with 6; = w. This fact indicates that
there is an unbounded isochronous center in such a situation.




Some periodic orbits of the unbounded center when both parameters 6 and € vanish. In the
original system, then we have § = b3 — bo\ — byw? = 0 and by = 0.



The analysis of ultimate closing equations

To apply the implicit function theorem at the point (rg,60,v) = (0,7, 0), we
must study the Jacobian matrix at such point, namely

2€
—2035 ;yﬁ 1 0\ [ —wm L O
260 — 4 0 —m s UNE
and we conclude that the point is always regular.
After defining Y(0) =1, T(&) = tanh(&) /€ for £ # 0, we get

: 63T (Z£) (6 — ep
0 = m 226 ro 8030 3 7‘02 3 (2)(2 )r02+0(r03),
pr L (P 1) (B2 + 1)
—26 80 (6 (,uz =+ 1) T 63,“) y b1 (%) (6 i &u) 2 3
voo= > o 3 To > ro” + O (ro”)
m (k2 +1) m2 (42 + 1) (1?4 1)




Theorem 1 Consider system (1) under the eigenvalue configuration {\,o 4+ iw} with w > 0,

and define the non-degeneracy parameter § = b — ba A — byw?.
If 0 # 0, then, for ¢ = 0 the system undergoes a Hopt bifurcation from infinity, that is, one

symmetric limit cycle of large amplitude appears for oo < 0 and ¢ sufliciently small.



Main results

Theorem 1 Consider system (1) under the eigenvalue configuration {\,o + iww} with w > 0,
and define the non-degeneracy parameter & = b — bo A — byw?.

If 0 # 0, then, for 0 = 0 the system undergoes a Hopt bifurcation from infinity, that is, one
symmetric limit cycle of large amplitude appears for 00 < 0 and o sufficiently small.

The period T of the periodic oscillation is an analytic function at 0, in the variable o, and the
first terms in its series expansion are

2 2
T:27T 27T>\5—|—()\3—|—w)b20__|_0(0_2).
W W>0

Taking yo = 1/r¢9 > 0 as a measure for the amplitude of the bifurcating limit cycle, its series
expansion in powers of o, starts with




Main results

Theorem 1 Consider system (1) under the eigenvalue configuration {\, o + iw} with w > 0,
and define the non-degeneracy parameter § = by — bo A — byw?.

It 0 # 0, then, for 0 = 0 the system undergoes a Hopt bifurcation from infinity, that is, one
symmetric limit cycle of large amplitude appears tor 0o < 0 and o sufficiently small.

In particular, when A\ #= 0, if 0 > 0 and A < 0, then the bifurcating limit cycle for o < 0
is orbitally asymptotically stable. Otherwise, if 0 < 0 or A > 0 the biturcating limit cycle is
unstable. In the case A = 0, assuming 6 = b3 — bjw? > 0 a sufficient condition for the stability
of the bitfurcating limit cycle for o < 0 is b; > 0.




Theorem 2 Consider system (1) as in Theorem 1, but under the assumptions b1bs # 0 and
bs = ba\ + w?b;, so that we are in the degenerate case § = 0.

For o0 = 0 the system still undergoes the Hopf bifurcation at infinity, so that one symmetric
limit cycle appears for b1bs0 < 0 and o sufficiently small.

In particular, if 165 > 0 and A < 0 then the limit cycle biturcates for o < 0 and is orbitally
asymptotically stable, being unstable if b1by < 0 or A > 0.

For the case A = 0, if b1 > 0 and by > 0, then the limit cycle bifurcates for o < 0 and is orbitally
asymptotically stable.



Main results

Theorem 3 Consider system (1) as in Theorem 1, under the assumptions b1by # 0, and b3 in
a neighborhood of the value b% = by + b;w?, so that the non-degeneracy parameter becomes
0 = bg — b3. Consider a neighborhood of the origin in the parameter plane (o,9). The following
statements hold.

(a) If b1bs < 0 (b1by > 0), then from the point (o,d) = (0,0) a saddle-node bifurcation curve
of periodic orbits emanates in the second quadrant (fourth quadrant) of the parameter
plane (o,d). This curve is the graph of a function with the following local expression

osn () = Y ) 0%+ 0(5)°.

(b) For (o, ) sufficiently close to the origin, if b1bs < 0, d > 0 and ogn(0) < o < 0 (b1by > 0,
0 <0and 0 <o <ogn(d)), then two limit cycles coexist.

(c) For points at the curve 0 = ogn there is only one non-hyperbolic limit cycle, and no limit
cycles out of the regions indicated in item (b) for b1by < 0 (b1bs > 0) and with ¢ < 0
(0 > 0).
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Bifurcation set in the parameter plane (o,0) for b1b2 > 0 (left panel) and b1by < 0 (right panel)
in a neighborhood of the origin. The digits indicate the number of limit cycles associated with
the Hopf bifurcation at infinity in each region.



Application to a specific 3D relay family

DiBernardo, Johansson and Vasca (2001), see also DiBernardo
et al. (2008), consider a family of relay systems

x=Ax+bu, y=c'x, wu=—sgnuy,

where
) —(2(o+A) 1 0 R 1
A= |—(2oN+&%) 0 1|, b=[2&5p]|, c=]0
&2 0 0 R 0




Application to a specific 3D relay family

Assuming in the sequel kK = —1, the system can be written in
the form

i —(2¢w+X) -1 0 T —1

gyl =\ QWA+a*) 0 —1| |y ]| —sign(z) | 26p ],

2 A& 0 0) \z —p-

so that the matrix A is already in our canonical form, and re-
garding the original parameters in system (1), we have b; = —1,
bg — 25’,5, bg — —,52, 0O — —CCD, A = —)\, and w2 — (1 — CQ)CDQ.




Application to a specific 3D relay family

We can select 5 as the main bifurcation parameter, since at the critical value 5 = 0, we get

the configuration o = 0, leading to the Hopt bifurcation from infinity. The non-degeneracy
parameter for such a bifurcation becomes

~

5(¢) = —p° + 2Mpo + (1 — P,

and as this parameter depends on the bifurcation parameter f , for getting non-degeneracy we
will only need

5o = 6(0) = —p% 4+ 20p5 + @2 # 0.



Application to a specific 3D relay family

We can select 5 as the main bifurcation parameter, since at the critical value 5 = 0, we get

the configuration o = 0, leading to the Hopt bifurcation from infinity. The non-degeneracy
parameter for such a bifurcation becomes

~

5(¢) = —p° + 2Mpo + (1 — P,

and as this parameter depends on the bifurcation parameter f , for getting non-degeneracy we
will only need

5o = 6(0) = —p% 4+ 20p5 + @2 # 0.

Taking p as a second bifurcation parameter, we detect two different critical values where 9
vanishes, namely 5% = \& + V252 + @2, Thus, we have 69 = —(p — p%.)(p — p~), so that g is
positive only for p* < p < p’. The value p* 1is always positive while p* is negative.




Bifurcation set of the system in the parameter plane (E ,p) for Kk = —1, and 6 = @ = A =1
Apart from the Hopf at mfimty bifurcation locus (¢ = 0), we show the saddle-node bifurcation

curves emerging from ((, *)=(0,1+ +2) and (C,p) = (0,1 — v/2), and the critical crossing
bifurcation curve (in red) Wthh intersects at the point S N¢c the saddle-node bifurcation curve

that emerges from (0, p% ), killing it.



Two limit cycles for kK = —1, A=6=0=1, and p = 2, near the saddle-node bifurcation that
appears at p = 2.09.



Conclusions

* A complete analysis of the limit cycle bifurcation from infinity in
3D Relay systems, which belong to the class of three-dimensional
symmetric discontinuous piecewise linear systems with two
zones, is presented.
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* The existence of a large amplitude limit cycle that bifurcates from
infinity is justified through a suitable adaptation of the closing
equations method, and analytical expressions for its amplitude
and period are provided.




Conclusions

* The existence of a large amplitude limit cycle that bifurcates from
infinity is justified through a suitable adaptation of the closing
equations method, and analytical expressions for its amplitude

and period are provided.

* Derivatives of the corresponding transition maps are rigorously
studied in order to characterize the stability of the bifurcating

limit cycle.




Conclusions

* The existence of a large amplitude limit cycle that bifurcates from
infinity is justified through a suitable adaptation of the closing equations
method, and analytical expressions for its amplitude and period are
provided.

* Derivatives of the corresponding transition maps are rigorously studied
in order to characterize the stability of the bifurcating limit cycle.

* The theoretical results are applied to a specific family of 3D relay
systems, where several high co-dimension bifurcation points are
detected, organizing the bifurcation set of the family.




| hope you enjoyed the presentation!




