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Setting the problem

Our main interest is to study stability problems inside a class of
3−dimensional partially integrable piecewise smooth vector fields.

We consider piecewise smooth vector fields Z = (X ,Y )
defined on R3 with discontinuity set
Σ = {(x , y , z) ∈ R3 : z = 0}, expressed as

Z (x , y , z) =

{
X (x , y , z), z ≥ 0,

Y (x , y , z), z ≤ 0,
(1)

where X ,Y are defined on R3, of C r−class, r ≥ 4.

Z = (X ,Y ) admit H(x , y , z) = x2 + y2 + z2 as a first integral.

Z = (X ,Y ) is refractive, i.e., Xf (p) = Yf (p) for all p ∈ Σ.
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Setting the spaces

We denote by X the class of piecewise vector fields Z = (X ,Y )
and we endow it with the C r - product topology.

We call R the space of all refractive vector fields Z = (X ,Y ) in X
and we endow R with the C r -induced product topology. Observe
that R is a Banach manifold.

For λ > 0 and sufficiently small, we denote by RSλ the set of all
the refractive piecewise smooth vector fields Z ∈ R restricted to
the sphere S2λ.

In other words, if Z ∈ R then the restriction Z|S2
λ

∈ RSλ , for all

λ > 0.
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Objective

Our main objective is to establish stability conditions in R.

In this context, we characterize a subset Σ0 ⊂ R having a simple
and comprehensive description satisfying that

if Z ∈ R is locally structurally stable then Z ∈ Σ0.
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Our Strategy

The first part of the work is analyze the systems in the space RSλ .

Theorem A is a version of Peixoto’s Theorem on RSλ

Theorem B is inspired by the classification of generic
one-parameter smooth vector fields defined on
two-dimensional manifolds given in [Sotomayor1974] and
[Teixeira1977].

The last part of the work is analyze the systems in the space R.

These results pave the way to prove Theorem C involving
3−dimensional refractive piecewise smooth vector fields in R.
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Piecewise smooth systems

Σ = {(x , y , z) : z = 0} = f −1(0) with f (x , y , z) = z .

In general, the Lie derivative of f along X at p ∈ Σ is given by
Xf (p) = X (p) · 5f (p). The higher order Lie derivatives are
X nf (p) = X (p) · 5X n−1f (p).

p is fold point of X if Xf (p) = 0,X 2f (p) 6= 0.

Recall that the fold points of X are said visible (invisible) if
X 2f (p) > 0 (X 2f (p) < 0, respect.).

The tangency set of X (Y ) with Σ is defined by
SX = {p ∈ Σ : Xf (p) = 0} (SY = {p ∈ Σ : Yf (p) = 0},
respect.).

Ultimately, the tangency set of Z is SZ = SX ∪ SY .
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Refractive piecewise smooth systems

Z = (X ,Y ) ∈ X is refractive (at Σ) provided Xf (p) = Yf (p) for
all p ∈ Σ.

Thus, if Z is a refractive system then Σ is composed just by
crossing regions, denoted, as usual, by
Σc = {p ∈ Σ : Xf (p)Yf (p) > 0}, and singularities or tangential
points. Besides, SX = SY .
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Generic Elliptic Fold-Fold Point

Let p ∈ Σ be an elliptic fold–fold point of Z and consider a local
chart x of Σ for which x = 0 corresponds to p ∈ Σ.

The vector field X induces on Σ an involution given by φX (x).
φX (x) is the point where the trajectory of X passing by x meets Σ.

Analogously, we denote by φY the involution induced by Y . These
involutions must be of the form
φX (x) = −x + αXx

2 − α2
Xx

3 +O4(x) and
φY (x) = −x + αY x

2 − α2
Y x

3 +O4(x), for certain αX , αY ∈ R.

Which allows us to define a return map φZ by

φZ (x) = φY ◦φX (x) = x+ (αY −αX )x2 + (αY −αX )2x3 +O4(x).

The generic condition (G), impose that φ
′′
X (0) 6= φ

′′
Y (0). This

condition implies that none of the trajectories of Z , in a
neighborhood of p, is a closed trajectory.
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Generic closed poly-trajectory

We say that a continuous curve Γ formed by regular trajectory arcs
of X and Y such that the transition between these arcs is made
across the crossing region is a poly-trajectory of Z .

If Γ is a closed poly-trajectory of Z we say that Γ is of the type I if
Γ reaches Σ just in crossing points and that Γ is of the type II if it
passes through at least one fold–fold point of Z .

Besides, we say that a closed poly-trajectory Γ of Z is generic (or
elementary) if it is of the type I and its first return map π : Σ→ Σ
satisfies π

′
(p) 6= 1, for all p ∈ Σ ∩ Γ.

We also say that Γ is a quasi-generic poly-trajectory of type I if
π : Σ→ Σ with π

′
(p) = 1 and π

′′
(q) 6= 0, for all p ∈ Σ ∩ Γ.
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π : Σ→ Σ with π

′
(p) = 1 and π

′′
(q) 6= 0, for all p ∈ Σ ∩ Γ.
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Codimension-one singularities on S2
λ.

Fold–Saddle point. Let p0 = (0, 0) be a fold–saddle point of
Z = (X ,Y ).

In this case we need to impose some extra
non-degeneracy conditions. First the saddle is an isolated
hyperbolic equilibrium point of Y and its eigenspaces are
transversal to Σ. If the fold point of X is invisible, we need two
more conditions. The elliptic fold–fold point that can appear on
the bifurcation diagram is generic and there is no self-connection
of saddle separatrices.
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Codimension-one singularities on S2
λ.

Fold–node point. Let p0 = (0, 0) be a fold–node point of
Z = (X ,Y ).

Extra non-degeneracy conditions: First the node is an
isolated hyperbolic equilibrium point of Y and its eigenspaces are
transversal to Σ.If the fold point of X is invisible, the elliptic
fold–fold point that can appear on the bifurcation diagram needs
to be generic.The fold–node points and their unfoldings can be
seen in

Buzzi, C. A. Structural stability in refractive partially integrable systems



Codimension-one singularities on S2
λ.

Fold–node point. Let p0 = (0, 0) be a fold–node point of
Z = (X ,Y ). Extra non-degeneracy conditions:

First the node is an
isolated hyperbolic equilibrium point of Y and its eigenspaces are
transversal to Σ.If the fold point of X is invisible, the elliptic
fold–fold point that can appear on the bifurcation diagram needs
to be generic.The fold–node points and their unfoldings can be
seen in

Buzzi, C. A. Structural stability in refractive partially integrable systems



Codimension-one singularities on S2
λ.

Fold–node point. Let p0 = (0, 0) be a fold–node point of
Z = (X ,Y ). Extra non-degeneracy conditions: First the node is an
isolated hyperbolic equilibrium point of Y and its eigenspaces are
transversal to Σ.

If the fold point of X is invisible, the elliptic
fold–fold point that can appear on the bifurcation diagram needs
to be generic.The fold–node points and their unfoldings can be
seen in

Buzzi, C. A. Structural stability in refractive partially integrable systems



Codimension-one singularities on S2
λ.

Fold–node point. Let p0 = (0, 0) be a fold–node point of
Z = (X ,Y ). Extra non-degeneracy conditions: First the node is an
isolated hyperbolic equilibrium point of Y and its eigenspaces are
transversal to Σ.If the fold point of X is invisible, the elliptic
fold–fold point that can appear on the bifurcation diagram needs
to be generic.

The fold–node points and their unfoldings can be
seen in

Buzzi, C. A. Structural stability in refractive partially integrable systems



Codimension-one singularities on S2
λ.

Fold–node point. Let p0 = (0, 0) be a fold–node point of
Z = (X ,Y ). Extra non-degeneracy conditions: First the node is an
isolated hyperbolic equilibrium point of Y and its eigenspaces are
transversal to Σ.If the fold point of X is invisible, the elliptic
fold–fold point that can appear on the bifurcation diagram needs
to be generic.The fold–node points and their unfoldings can be
seen in

Buzzi, C. A. Structural stability in refractive partially integrable systems



Codimension-one singularities on S2
λ.

Fold–Focus point. Let p0 = (0, 0) be a fold–focus point of
Z = (X ,Y ).

In this case we need to impose one extra
non-degeneracy condition:the focus is an isolated hyperbolic
equilibrium point of Y . It means that the trace and determinant of
DY (p0) are nonzero and positive, respectively.
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Codimension-one singularities on S2
λ.

Quasi-generic elliptic fold–fold. Let p0 = (0, 0) be a fold–fold
point of Z = (X ,Y ).

It is a well-known result that the first return
map of an elliptic fold–fold point is written in the form

φZ (x0) = x0 + αx2
0 − α2x3

0 + βx4
0 +O5(x0).

Then we need to impose the non-degeneracy condition α = 0 and
β 6= 0.
Besides, when β < 0 (β > 0) the quasi-generic elliptic fold–fold
point is stable (unstable, respect.). When α < 0 (α > 0, respect.)
the origin is a generic stable (unstable) elliptic fold–fold point and
when α > 0 (α < 0, respect.) the stability of the fold–fold point
changes from stable to unstable (unstable to stable, respect.)
giving rise to a small amplitude poly-trajectory of type I.
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Codimension-one singularities on S2
λ.

Simple cusp–cusp. Let p0 = (0, 0) be a cusp–cusp point of
Z = (X ,Y ).

The case with two parabolic fold–fold points on the unfolding we
do not need additional non-degeneracy conditions.
The case there with one elliptic and one hyperbolic fold–fold point
on the unfolding we need to impose that these elliptic fold–fold
point is generic and that there is no self-connections between the
separatrices of the hyperbolic fold–fold point.
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Global structural stability on S2
λ.

Definition

Z = (X ,Y ) ∈ ΣSλ
0 if, and only if,

(a) All equilibrium points of X and Y are hyperbolic and away
from Σ;

(b) All periodic orbits are hyperbolic and away from Σ;

(c) All closed poly-trajectories are elementary;

(d) The singularities on Σ are just generic fold–fold points;

(e) There is no separatrices connections.

(f) There is no non-trivially recurrent orbits.
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Global structural stability on S2
λ.

Theorem A

There exists a subset ΣSλ
0 ⊂ RSλ ⊂ X Sλ satisfying:

(i) It has a simple and comprehensive description.

(ii) Z ∈ RSλ is structurally stable if, and only if, Z ∈ ΣSλ
0 .

(iii) ΣSλ
0 is open and dense in RSλ .
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The generic bifurcation manifold on S2
λ

Consider the bifurcation set RSλ
1 = RSλ \ ΣSλ

0 .

We define the set

ΣSλ
1 =ΣSλ

1 (a1) ∪ ΣSλ
1 (a2) ∪ ΣSλ

1 (b1) ∪ ΣSλ
1 (b2) ∪ ΣSλ

1 (c1) ∪ ΣSλ
1 (c2)∪

ΣSλ
1 (d1) ∪ ΣSλ

1 (d2) ∪ ΣSλ
1 (e),

where,

Z = (X ,Y ) ∈ ΣSλ
1 (a1) if all equilibrium points of X and Y

are hyperbolic except one of them that is either a saddle-node
or a Hopf equilibrium point. All of them are away from Σ.
Moreover, the conditions (b), (c), (d), (e) and (f) of
Definition of ΣSλ

0 are satisfied.

Z = (X ,Y ) ∈ ΣSλ
1 (a2) if Z has only one equilibrium–fold (or

fold–equilibrium) point p ∈ Σ. In addition we consider the
non-degeneracy conditions given previously. Moreover, the
conditions (b), (c), (d), (e) and (f) of Definition of ΣSλ

0 are
satisfied.
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The generic bifurcation manifold on S2
λ

Z = (X ,Y ) ∈ ΣSλ
1 (b1) if all periodic orbits of X and Y are

hyperbolic except one of them which is of saddle-node type.
None of them is tangent to Σ. Moreover, the conditions (a),
(c), (d), (e) and (f) of Definition of ΣSλ

0 are satisfied.

Z = (X ,Y ) ∈ ΣSλ
1 (b2) if all periodic orbits are hyperbolic and

just one of them is generically tangent to Σ. Moreover, the
conditions (a), (c), (d), (e) and (f) of Definition of ΣSλ

0 are
satisfied.
Z = (X ,Y ) ∈ ΣSλ

1 (c1) if all poly-trajectories of Z are
elementary except one, Γ, of type I such that π

′
(q) = 1 and

π
′′

(q) = d
′′

(q) 6= 0, for all q ∈ Σ ∩ Γ. Moreover, the
conditions (a), (b), (d), (e) and (f) of Definition of ΣSλ

0 are
satisfied.
Z = (X ,Y ) ∈ ΣSλ

1 (c2) if all poly-trajectories of Z are
elementary except one of them which is of type II with just
one hyperbolic fold–fold point. Moreover, the conditions (a),
(b), (d), (e) and (f) of Definition of ΣSλ

0 are satisfied.
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The generic bifurcation manifold on S2
λ

Z = (X ,Y ) ∈ ΣSλ
1 (d1) if all tangency points are generic

fold–fold points except one of them which is a quasi-generic
fold–fold point. Moreover, the conditions (a), (b), (c), (e)
and (f) of Definition of ΣSλ

0 are satisfied.

Z = (X ,Y ) ∈ ΣSλ
1 (d2) if all tangency points are generic

fold–fold points except one of them which is a simple (or
generic) cusp–cusp. Moreover, the conditions (a), (b), (c), (e)
and (f) of Definition of ΣSλ

0 are satisfied.

Z = (X ,Y ) ∈ ΣSλ
1 (e) if there is just one separatrix connection
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(c), (d) and (f) of Definition of ΣSλ
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The generic bifurcation manifold on S2
λ

Theorem B

There exists a immersed codimension-one submanifold ΣSλ
1 ⊂ RSλ

satisfying:

(i) ΣSλ
1 is characterized.

(ii) For any Z0 ∈ ΣSλ
1 , there exists a neighborhood B(Z0) ⊂ ΣSλ

1

such that any Z ∈ B is Σ-equivalent to Z0 (in the intrinsic
topology of R1). Thus, ΣSλ

1 is open in R1 with the intrinsic
topology.

(iii) ΣSλ
1 is dense in R1.

Remark

It is important to note that we use the intrinsic topology in item
(ii) of Theorem B because it is finer (i.e. it has more open sets)
than the ambient topology.
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Stability conditions in R

We use spherical coordinates to consider Z = (X ,Y ) ∈ R as a 1−
parameter family of refractive piecewise smooth vector fields
Zλ ∈ RSλ .

The spherical coordinates on R3 is given by
x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ, where 0 ≤ θ ≤ 2π,
0 ≤ φ ≤ π and ρ ≥ 0,in which we can write
X (ρ, θ, φ) = (R1(ρ, θ, φ),Θ1(ρ, θ, φ),Φ1(ρ, θ, φ)),
Y (ρ, θ, φ) = (R2(ρ, θ, φ),Θ2(ρ, θ, φ),Φ2(ρ, θ, φ)),and the
discontinuity set Σ = {(ρ, θ, φ);φ = π/2}. So, the refractive
vector field Z : U ⊂ R3 → R3 is given by

Z (ρ, θ, φ) =

{
X (ρ, θ, φ), 0 ≤ φ ≤ π/2,

Y (ρ, θ, φ), π/2 ≤ φ ≤ π.
(2)
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Stability conditions in R

Note that if all the spheres are invariant by the flow of Z , i.e., if
Z ∈ R, then Ri (ρ, θ, φ) ≡ 0, i = 1, 2.

We can define a 1−parameter family of refractive vector fields in
RSλ , Zµ : I × S2λ → TS2λ, writing

Zµ(µ, θ, φ) = (Xµ(µ, θ, φ),Yµ(µ, θ, φ)), (3)

with Zµ ∈ RSλ for all µ ∈ I .

Thus, it is possible to make a correspondence between a
1−parameter family Zµ ∈ RSλ , with µ ∈ I , and a unique
Z : Vλ0 → R3 ∈ R, where Vλ0 is a tubular neighborhood of S2λ0

given by Vλ0 = {(µ, θ, φ) ∈ R3;µ ∈ I , 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π}.
To do that, for each Zµ(µ, θ, φ) = (Xµ(µ, θ, φ),Yµ(µ, θ, φ))
defined by (3) we associate Z (µ, θ, φ) = (X (µ, θ, φ),Y (µ, θ, φ))
defined by (2).
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Generic set

On the following we consider Z = (X ,Y ) ∈ R and the restriction
Zλ = Z|S2

λ

to the sphere S2λ.

Given a vector field Z ∈ R we consider it as a 1−parameter family
of refractive vector fields Zλ ∈ RSλ .

Definition

We say that Z ∈ Σ0 ⊂ R if, and only if,for each λ0 there exists a
neighborhood Vλ0 of λ0 in which one of the following conditions is
satisfied:

(a) Zλ ∈ ΣSλ
0 for all λ ∈ Vλ0 ;

(b) Zλ0 ∈ ΣSλ
1 and Zλ ∈ ΣSλ

0 for all λ ∈ Vλ0 \ {λ0};
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Main Theorem

Theorem C

If Z ∈ R is structurally stable, then Z ∈ Σ0.
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Idea of the proof

Let Z ∈ R \ Σ0.

Then there exists λ0 such that Zλ0 /∈ ΣSλ
0 ∪ ΣSλ

1 .Let U ⊂ R be an
arbitrarily neighborhood of Z . Thus we can write U = V × B, with
B ⊂ RSλ0 a neighborhood of Zλ0 .

As Zλ0 /∈ ΣSλ
0 ∪ ΣSλ

1 and ΣSλ
0 is dense in RSλ0 , there exist

Z̃λ0 ∈ B ∩ ΣSλ
0 ,which can be extended to a refractive piecewise

vector field Z̃ ∈ U ⊂ R.

As Z̃λ0 is structurally stable in RSλ0 , there exist ε0 > 0 and a
tubular neighborhood Vλ0 = {(λ, θ, φ) ∈ R3;λ0 − ε0 ≤ λ ≤
λ0 + ε0, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π} of S2λ0

such that Z̃λ is

Σ-equivalent to Z̃λ0 for all λ ∈ (λ0 − ε0, λ0 + ε0).
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Idea of the proof

In this case Z̃ is not Σ-equivalent to Z in R.

So, we have proved that if Z is such that Zλ0 /∈ ΣSλ
0 ∪ ΣSλ

1 , given

any neighborhood U ⊂ R of Z there exists Z̃ ∈ U such that Z̃ is
not Σ-equivalent to Z .

This implies that Z is not structurally stable.
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