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A flow on a manifold M is a group action of the additive group of
the real numbers R on M,

i.e. a flow is a mapping
φ : M × R → M such that letting φt = φ(·, t) we have

φ0 = id and φs ◦ φt = φs+t

for all s, t ∈ R.

We recall that the orbit of a point x ∈ M is the set of points
φt(x) for t ∈ R.
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An orbit is periodic of period T > 0 if φT (x) = x and φt(x) ̸= x
for t ∈ (0,T ).

The orbit of x is dense if for each ε > 0 and x̄ ∈ M there exists
t ∈ R such that

d(φt(x), x̄) < ε,

where d is the distance on M.
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Figure: Identifications for the 2-dimensional torus (on the left) and for
the Klein bottle (on the right).

Let Q be the closed square formed by the points (x , y) with
(x , y) ∈ [0,1].

We obtain the 2-dimensional torus T2 identifying the point (x ,0)
with the point (x ,1) for all x ∈ [0,1], and the point (0, y) with the
point (1, y) for all y ∈ [0,1] (see the image on the left of the
figure). Note that the four vertices of Q are identified.

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Figure: Identifications for the 2-dimensional torus (on the left) and for
the Klein bottle (on the right).

Let Q be the closed square formed by the points (x , y) with
(x , y) ∈ [0,1].

We obtain the 2-dimensional torus T2 identifying the point (x ,0)
with the point (x ,1) for all x ∈ [0,1], and the point (0, y) with the
point (1, y) for all y ∈ [0,1] (see the image on the left of the
figure).

Note that the four vertices of Q are identified.

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Figure: Identifications for the 2-dimensional torus (on the left) and for
the Klein bottle (on the right).

Let Q be the closed square formed by the points (x , y) with
(x , y) ∈ [0,1].

We obtain the 2-dimensional torus T2 identifying the point (x ,0)
with the point (x ,1) for all x ∈ [0,1], and the point (0, y) with the
point (1, y) for all y ∈ [0,1] (see the image on the left of the
figure). Note that the four vertices of Q are identified.

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Figure: Identifications for the 2-dimensional torus (on the left) and for
the Klein bottle (on the right).

We obtain the Klein bottle K identifying the point (x ,0) with the
point (x ,1) for all x ∈ [0,1], and the point (0, y) with the point
(1,1 − y) for all y ∈ [0,1] (see the image on the right of the
figure).

Note that the four vertices of Q are identified.
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Take a vector (u, v) ∈ R2 with u2 + v2 = 1.

The flow on the torus T2 with direction (u, v) is defined as
follows. Take a point (x0, y0) ∈ T2 in the interior of the square
Q. Then the flow through the point (x0, y0) is defined by

φt(x0, y0) = (x0 + ut , y0 + vt)

for t in a neighborhood of t = 0 such that φt(x0, y0) remains in
the interior of the square Q.

This means that the orbit travels on the straight line
v(x − x0)− u(y − y0) = 0

through the point (x0, y0).
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If at time t (either with t > 0 or t < 0) the point
(x1, y1) = φt(x0, y0) is at the boundary of the square Q for the
first time, we consider a point (x2, y2) identified with the point
(x1, y1).

Then the flow continues on the straight line

v(x − x2)− u(y − y2) = 0

in the same direction (so that it remains inside the square), until
it reaches again the boundary of the square Q, and so on.

For a point (x0, y0) ∈ T2 at the boundary of Q the flow is defined
as above for (x1, y1).
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Any flow on the torus T2 with direction (u, v) for some vector
(u, v) ∈ R2 with u2 + v2 = 1 is called a flow with constant slope
on the torus T2.

Recall that u and v are said to be rationally dependent if there
exist p,q ∈ Z not both zero such that pu + qv = 0, otherwise
they are rationally independent.

The following result is well known.
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THEOREM 1 Consider a flow with constant slope on the torus
T2 with direction (u, v) ∈ R2 of norm 1. Then the following
statements hold.

(a) If u and v are rationally dependent, then all orbits are
periodic of period

(a.1) 1 if either v = 0 or u = 0;
(a.2) |q/u| if pu + qv = 0 with p and q relatively prime.

(b) If u and v are rationally independent, then all orbits are
dense.
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For a proof of the statement (a) of THEOREM 1 see for
instance the appendix 1 of the book:

V. Arnold and A. Avez, Ergodic Problems of Classical
Mechanics, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
While for a proof of the statement (b) see the works:
A. Denjoy, Sur les courbes définies par les équations
différentielles à la surface du tore, J. Math. Pures Appl. 11
(1932), 333–376.
C. Siegel, Note on differential equations on the torus, Ann. of
Math. (2) 46 (1945), 423–428.
In fact Poincaré in
H. Poincaré, Oeuvres Complètes, vol. 1, 137–158.
was the first to describe these results without a rigorous proof
for statement (b).
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Take a vector (u, v) ∈ R2 with u2 + v2 = 1.

The flow on the Klein bottle K with direction (u, v) is defined in
a similar manner to that of the flow on T2, although the slope
along which an orbit travels needs to change its sign when the
flow reaches a vertical side of Q. This change will be
determined by a normal vector to K.
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Now take a point (x0, y0) ∈ K in the interior of the square Q and
a unit normal vector w ∈ {−1,1} (the sign of w depends on
whether it points to one or the other side of the surface).

Then
the flow on K∗ = K× {−1,1} with direction (u, v) through the
point (x0, y0,w) is defined by

φt(x0, y0,w) = (x0 + ut , y0 + vt ,w)
for t in a neighborhood of t = 0 such that (x0 + ut , y0 + vt)
remains in the interior of the square Q, taking always the same
normal vector w .
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If at time t (either with t > 0 or t < 0) the point (x1, y1) with
(x1, y1,w) = φt(x0, y0,w) is at the boundary of the square Q for
the first time, we consider a point (x2, y2) identified with (x1, y1).

If these two points are on the horizontal sides of Q (but not at
vertices), then the flow continues as

φt(x2, y2,w) = (x2 + ut , y2 + vt ,w),
while if they are on the vertical sides of Q, then the flow
continues as

φt(x2, y2,w) = (x2 + ut , y2 − vt ,−w),
so that (x2 + ut , y2 + vt) and (x2 + ut , y2 − vt), respectively, are
inside the square for small values of t , until they reach again
the boundary of Q, and so on.

For a point (x0, y0) in K at the boundary of Q the flow is defined
as above for (x1, y1).
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The reason for the need of changing the sign of the slope.

Figure: Change of slope after reaching the boundary x = 1.

When the orbits reach the boundary x = 1 we need to identify
the sets A and B in the figure, but with opposite orientation.

In other words, when we flip the boundary x = 1 the order of
the orbits as well as their slopes change, which causes that
unless v vanishes we need to change the sign of the slope.
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We note that our constant flows on the Klein bottle K really are
defined on K∗ = K× {−1,1}, i.e. are defined on the unit
normal bundle of the Klein bottle, but simply we call such a flow
as a flow with constant slope on the Klein bottle K.

The following result is a version of THEOREM 1 for the Klein
bottle.
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THEOREM 2 Consider a flow φt with constant slope on the
Klein bottle K with direction (u, v) ∈ R2 of norm 1. Then the
following statements hold.

(a) If u and v are rationally dependent, then all orbits are
periodic of period

(a.1) 1 if u = 0;
(a.2) 2 if v = 0;
(a.3) 2|q/u| if pu + qv = 0 with p and q relatively prime and q is

odd;
(a.4) |q/u| if pu + qv = 0 with p and q relatively prime and q is

even.

(b) If u and v are rationally independent, then all orbits are
dense.
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We note that in the proof of THEOREM 2, with the exception of
the constant flows with vector (0, v), it suffices to consider the
orbits which pass through the points (0, y ,w) with y ∈ [0,1] and
w ∈ {−1,1} because all the orbits contain at least one of these
points.

The proof of statement (a.1) is easy. Indeed,

For the case u = 0 and consequently v = ±1 we have
φt(0, y ,w) = (0, y + vt ,w) for all t ∈ R. Hence, the orbit of any
point (0, y ,w) has period 1.
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We first consider the case v = 0, and consequently u = ±1.

Then φt(0, y ,w) = (ut , y ,w) for t between 0 and 1/u. Since the
first component ut takes different values for t strictly between 0
and 1/u, to look for periodic orbits we need to take |t | ≥ 1. For
t = 1/u we have

φ1/u(0, y ,w) = (1, y ,w) ≡ (0,1 − y ,−w).

Similarly, for t between 0 and 1/u we have
φt+1/u(0, y ,w) = φt(0,1 − y ,−w) = (ut ,1 − y ,−w),

and so to look for periodic orbits again we need to take |t | ≥ 1.
Since

φ2/u(0, y ,w) = (1,1 − y ,−w) ≡ (0, y ,w),
the orbit of any point (0, y ,w) has period 2.
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Now we assume that uv ̸= 0, and that u and v are rationally
dependent, i.e. pu + qv = 0 with p and q relatively prime
nonzero integer numbers,

we have

φ2/u(0, y ,w) = φ1/u(1, y + v/u,w) ≡ φ1/u(0,1 − y − v/u,−w)

= (1,1 − y − 2v/u,−w) ≡ (0, y + 2v/u,w).

Writing v/u = −p/q, it follows from the former identity that the
orbit of any point (0, y ,w) is periodic of period 2|q/u| when q is
odd, and is periodic of period |q/u| when q is even. This
completes the proof of statement (a).

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Now we assume that uv ̸= 0, and that u and v are rationally
dependent, i.e. pu + qv = 0 with p and q relatively prime
nonzero integer numbers, we have

φ2/u(0, y ,w) = φ1/u(1, y + v/u,w) ≡ φ1/u(0,1 − y − v/u,−w)

= (1,1 − y − 2v/u,−w) ≡ (0, y + 2v/u,w).

Writing v/u = −p/q, it follows from the former identity that the
orbit of any point (0, y ,w) is periodic of period 2|q/u| when q is
odd, and is periodic of period |q/u| when q is even. This
completes the proof of statement (a).

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Now we assume that uv ̸= 0, and that u and v are rationally
dependent, i.e. pu + qv = 0 with p and q relatively prime
nonzero integer numbers, we have

φ2/u(0, y ,w) = φ1/u(1, y + v/u,w) ≡ φ1/u(0,1 − y − v/u,−w)

= (1,1 − y − 2v/u,−w) ≡ (0, y + 2v/u,w).

Writing v/u = −p/q, it follows from the former identity that the
orbit of any point (0, y ,w) is periodic of period 2|q/u| when q is
odd, and is periodic of period |q/u| when q is even.

This
completes the proof of statement (a).

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Now we assume that uv ̸= 0, and that u and v are rationally
dependent, i.e. pu + qv = 0 with p and q relatively prime
nonzero integer numbers, we have

φ2/u(0, y ,w) = φ1/u(1, y + v/u,w) ≡ φ1/u(0,1 − y − v/u,−w)

= (1,1 − y − 2v/u,−w) ≡ (0, y + 2v/u,w).

Writing v/u = −p/q, it follows from the former identity that the
orbit of any point (0, y ,w) is periodic of period 2|q/u| when q is
odd, and is periodic of period |q/u| when q is even. This
completes the proof of statement (a).

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Finally, we assume that u and v are rationally independent
(then v/u is an irrational number).

Again we have
φ2/u(0, y ,w) ≡ (0, y + 2v/u,w).

The map (0, y) 7→ (0, y + 2v/u) is an irrational rotation of the
circle and so all its orbits (0, y + 2nv/u) for n ∈ Z are dense on
the circle (see for instance Denjoy). Therefore, for any point
(0, y ,w) the collection of segments

φt+2n/u(0, y ,w) ≡ (0, y + 2nv/u,w) + (u, v ,0)t
for n ∈ N and t ∈ (0,1/|u|) of its orbit are dense on Q × {w},
while the collection of segments
φt+2n/u(0, y ,w) ≡ (0,1 − y − (2n + 1)v/u,−w) + (u,−v ,0)(t − 1/|u|)
for n ∈ N and t ∈ (1/|u|,2/|u|) of its orbit are dense on
Q ×{−w}. This establishes statement (b), which completes the
proof of the theorem.

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Finally, we assume that u and v are rationally independent
(then v/u is an irrational number). Again we have

φ2/u(0, y ,w) ≡ (0, y + 2v/u,w).

The map (0, y) 7→ (0, y + 2v/u) is an irrational rotation of the
circle and so all its orbits (0, y + 2nv/u) for n ∈ Z are dense on
the circle (see for instance Denjoy). Therefore, for any point
(0, y ,w) the collection of segments

φt+2n/u(0, y ,w) ≡ (0, y + 2nv/u,w) + (u, v ,0)t
for n ∈ N and t ∈ (0,1/|u|) of its orbit are dense on Q × {w},
while the collection of segments
φt+2n/u(0, y ,w) ≡ (0,1 − y − (2n + 1)v/u,−w) + (u,−v ,0)(t − 1/|u|)
for n ∈ N and t ∈ (1/|u|,2/|u|) of its orbit are dense on
Q ×{−w}. This establishes statement (b), which completes the
proof of the theorem.

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Finally, we assume that u and v are rationally independent
(then v/u is an irrational number). Again we have

φ2/u(0, y ,w) ≡ (0, y + 2v/u,w).

The map (0, y) 7→ (0, y + 2v/u) is an irrational rotation of the
circle and so all its orbits (0, y + 2nv/u) for n ∈ Z are dense on
the circle (see for instance Denjoy).

Therefore, for any point
(0, y ,w) the collection of segments

φt+2n/u(0, y ,w) ≡ (0, y + 2nv/u,w) + (u, v ,0)t
for n ∈ N and t ∈ (0,1/|u|) of its orbit are dense on Q × {w},
while the collection of segments
φt+2n/u(0, y ,w) ≡ (0,1 − y − (2n + 1)v/u,−w) + (u,−v ,0)(t − 1/|u|)
for n ∈ N and t ∈ (1/|u|,2/|u|) of its orbit are dense on
Q ×{−w}. This establishes statement (b), which completes the
proof of the theorem.

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Finally, we assume that u and v are rationally independent
(then v/u is an irrational number). Again we have

φ2/u(0, y ,w) ≡ (0, y + 2v/u,w).

The map (0, y) 7→ (0, y + 2v/u) is an irrational rotation of the
circle and so all its orbits (0, y + 2nv/u) for n ∈ Z are dense on
the circle (see for instance Denjoy). Therefore, for any point
(0, y ,w) the collection of segments

φt+2n/u(0, y ,w) ≡ (0, y + 2nv/u,w) + (u, v ,0)t
for n ∈ N and t ∈ (0,1/|u|) of its orbit are dense on Q × {w},

while the collection of segments
φt+2n/u(0, y ,w) ≡ (0,1 − y − (2n + 1)v/u,−w) + (u,−v ,0)(t − 1/|u|)
for n ∈ N and t ∈ (1/|u|,2/|u|) of its orbit are dense on
Q ×{−w}. This establishes statement (b), which completes the
proof of the theorem.

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Finally, we assume that u and v are rationally independent
(then v/u is an irrational number). Again we have

φ2/u(0, y ,w) ≡ (0, y + 2v/u,w).

The map (0, y) 7→ (0, y + 2v/u) is an irrational rotation of the
circle and so all its orbits (0, y + 2nv/u) for n ∈ Z are dense on
the circle (see for instance Denjoy). Therefore, for any point
(0, y ,w) the collection of segments

φt+2n/u(0, y ,w) ≡ (0, y + 2nv/u,w) + (u, v ,0)t
for n ∈ N and t ∈ (0,1/|u|) of its orbit are dense on Q × {w},
while the collection of segments
φt+2n/u(0, y ,w) ≡ (0,1 − y − (2n + 1)v/u,−w) + (u,−v ,0)(t − 1/|u|)
for n ∈ N and t ∈ (1/|u|,2/|u|) of its orbit are dense on
Q ×{−w}.

This establishes statement (b), which completes the
proof of the theorem.

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Finally, we assume that u and v are rationally independent
(then v/u is an irrational number). Again we have

φ2/u(0, y ,w) ≡ (0, y + 2v/u,w).

The map (0, y) 7→ (0, y + 2v/u) is an irrational rotation of the
circle and so all its orbits (0, y + 2nv/u) for n ∈ Z are dense on
the circle (see for instance Denjoy). Therefore, for any point
(0, y ,w) the collection of segments

φt+2n/u(0, y ,w) ≡ (0, y + 2nv/u,w) + (u, v ,0)t
for n ∈ N and t ∈ (0,1/|u|) of its orbit are dense on Q × {w},
while the collection of segments
φt+2n/u(0, y ,w) ≡ (0,1 − y − (2n + 1)v/u,−w) + (u,−v ,0)(t − 1/|u|)
for n ∈ N and t ∈ (1/|u|,2/|u|) of its orbit are dense on
Q ×{−w}. This establishes statement (b), which completes the
proof of the theorem.

JAUME LLIBRE Universitat Autònoma de Barcelona



Outline
Flow on a manifold

The 2-dimensional torus T2

The Klein bottle
Linear and quadratic systems on T2

Until now we have studied constant flows on the Klein bottle K
which are defined on K∗ = K× {−1,1}, i.e. are defined on the
unit normal bundle of the Klein bottle.

Now we shall study a continuous constant flow on the Klein
bottle K but not in unit normal bundle of the Klein bottle.
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Take a vector (u, v) ∈ R2 with u2 + v2 = 1, and take a point
(x0, y0) ∈ K in the interior of the square Q,

then the flow on K
with direction (u, v) through the point (x0, y0) is defined by

φ((x0, y0), t) = (x0 + ut , y0 + vt)
for t in a neighborhood of t = 0 such that (x0 + ut , y0 + vt)
remains in the interior of the square Q.
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If at time t (either with t > 0 or t < 0) the point (x1, y1) with
(x1, y1) = φ((x0, y0), t) is at the boundary of the square Q for
the first time, we consider a point (x2, y2) identified with (x1, y1).

Then the flow continues as
φ((x2, y2), t) = (x2 + ut , y2 + vt),
so that (x2 + ut , y2 + vt) is inside the square for small values of
t , until they reach again the boundary of Q, and so on.

For a point (x0, y0) in K at the boundary of Q the flow is defined
as above for (x1, y1).

Note that the flow is smooth in the whole square Q, except on
the vertical sides of Q the flow is only continuous if v ̸= 0.
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THEOREM 3 Consider the discontinuous flow with constant
slope on the Klein bottle K with direction (u, v) ∈ R2 of norm 1
previously defined.

Then all its orbits are periodic of period
(a) 1 if u = 0;
(b) 2/u if u ̸= 0, except the orbits of the points

(0,1/2 − v/(2u)) and (0,−v/(2u)) which have period 1/u.
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We note that in the proof of THEOREM 3 with the exception of
the constant flows with vector (0,±1), it suffices to consider the
orbits which pass through the points (0, y0) with y0 ∈ [0,1],
because all the orbits contain at least one of these points.
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Assume that u = 0 and v = ±1.

Then flow
φ((x0, y0), t) = (x0, y0 ± t) satisfies that
φ1((x0, y0)) = (x0, y0 ± 1) = (x0, y0)
and that φt((x0, y0)) = (x0, y0 ± t) ̸= (x0, y0)
for all t ∈ (0,1).

Therefore the orbit through the point (x0, y0) is periodic of
period 1. Hence statement (a) of THEOREM 3 is proved.
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Now we assume that u ̸= 0, then we have

φ1/u (0, y0) =
(

1, y0 +
v
u

)
≡
(

0,1 − y0 −
v
u

)
.

When y0 = 1 − y0 − v/u (mod1) the orbit of the point (0, y0)
has period 1/u.

Also we have

φ1/u

(
0,− v

2u

)
=
(

1,
v
2u

)
≡
(

0,1 − v
2u

)
=
(

0,− v
2u

)
.
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Recall that φ1/u (0, y0) =
(

0,1 − y0 −
v
u

)
. If y0 does not satisfy

y0 = 1 − y0 − v/u (mod1) and y0 ̸= −v/(2u), then

ψ2/u(0, y0) ≡ ψ1/u

(
0,1 − y0 −

v
u

)
= (1,1 − y0) ≡ (0, y0).

So the orbit of the point (0, y0) has period 2/u. This proves
statement (b) of THEOREM 3.
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Quadratic differential systems

A continuous linear differential system on the torus T2 is of the
form ẋ = a + bx + cy , ẏ = A + Bx + Cy , satisfying

ẋ |x=0 − ẋ |x=1 = −b = 0, ẏ |x=0 − ẏ |x=1 = −B = 0,
ẋ |y=0 − ẋ |y=1 = −c = 0, ẏ |y=0 − ẏ |y=1 = −C = 0.

Then the continuous linear differential systems on the torus T2

are
ẋ = a, ẏ = A,

In fact these differential systems define a flow with constant
slow on the torus T2.
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ẋ = a, ẏ = A,
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A continuous quadratic differential system on the torus T2 is of
the form

ẋ = a0 + a1x + a2y + a3x2 + a4xy + a5y2,

ẏ = b0 + b1x + b2y + b3x2 + b4xy + b5y2,

satisfying

ẋ |x=0 − ẋ |x=1 = −a1 − a3 − a4y = 0, ẏ |x=0 − ẏ |x=1 = −b1 − b3 − b4y = 0,
ẋ |y=0 − ẋ |y=1 = −a2 − a5 − a4x = 0, ẏ |y=0 − ẏ |y=1 = −b2 − b5 − b4x = 0.

Then the continuous quadratic differential systems on the torus
T2 are

ẋ = a0 + a3x(x − 1) + a5y(y − 1),
ẏ = b0 + b3x(x − 1) + b5y(y − 1).
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In summary on the red and blue circles in the torus the
quadratic system is only continuous in the rest it is analytic.
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Renaming the parameters the continuous quadratic differential
systems on the torus T2 are

ẋ = a + bx(x − 1) + cy(y − 1),
ẏ = A + Bx(x − 1) + Cy(y − 1).

In what follows these quadratic differential systems are
denotes simply by quadratic systems or QS.

These quadratic systems on the torus T2 depend on 6
parameters, while the quadratic differential systems on the
plane R2 depend on 12 parameters.

We do not consider QS in the torus T2 with infinitely many
equilibria.
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Assume that Bc − bC ̸= 0 and that

(aC − Ac)(Ab − aB)(1 + 4
aC − Ac
Bc − bC

)(1 + 4
Ab − aB
Bc − bC

) ̸= 0.

Then the QS have the following 4 equilibria(
1
2
± 1

2

√
1 + 4

aC − Ac
Bc − bC

,
1
2
± 1

2

√
1 + 4

Ab − aB
Bc − bC

)
,
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BERLINSKII THEOREM. Assume that a quadratic system

ẋ = a0 + a1x + a2y + a3x2 + a4xy + a5y2,

ẏ = b0 + b1x + b2y + b3x2 + b4xy + b5y2,

in the plane R2 has four equilibria at the vertices of a convex
quadrilateral. Then two opposite equilibria are saddles (index
−1) and the other two are antisaddles (index 1).

A. N. BERLINSKII, On the behavior of the integral curves of a
differential equation, Izv. Vyssh. Uchebn. Zaved. Mat. 2
(1960), 3–18.
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Berlinskii Theorem for quadratic systems on the torus can be
improved as follows.

THEOREM. Assume that a quadratic system

ẋ = a + bx(x − 1) + cy(y − 1),
ẏ = a + Bx(x − 1) + Cy(y − 1).

in the torus T2 has four equilibria. Then they are localized at
the vertices of a rectangle with center at the point (1/2,1/2).
Two opposite equilibria are saddles (index −1) and the other
two are antisaddles (index 1). The two antisaddles are both
either nodes, or foci, or centers, these three possibilities are
realizable.
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The four equilibria are(
1
2
± 1

2

√
1 + 4

aC − Ac
Bc − bC

,
1
2
± 1

2

√
1 + 4

Ab − aB
Bc − bC

)
=

(
1
2
± K ,

1
2
± L
)
,

They exist if K > 0, L > 0 and (aC − Ac)(Ab − aB) ̸= 0.
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THEOREM. The following statements hold.

If (bC − Bc)KL < 0 the equilibrium is a saddle.

If (bC − Bc)KL > 0 and 4(Bc − bC)KL + (bK + CL)2 > 0 the
equilibrium is a node.

If (bC − Bc)KL > 0, 4(Bc − bC)KL + (bK + CL)2 < 0 and
bK + CL ̸= 0 the equilibrium is a strong focus.

If (bC − Bc)KL > 0, 4(Bc − bC)KL + (bK + CL)2 < 0,
bK +CL = 0 and b3c −BC3 ̸= 0 the equilibrium point is a weak
focus.

If (bC − Bc)KL > 0, 4(Bc − bC)KL + (bK + CL)2 < 0,
bK + CL = 0 and b3c − BC3 = 0 the equilibrium point is a
center.
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THEOREM. The following statements hold.
If (bC − Bc)KL < 0 the equilibrium is a saddle.

If (bC − Bc)KL > 0 and 4(Bc − bC)KL + (bK + CL)2 > 0 the
equilibrium is a node.

If (bC − Bc)KL > 0, 4(Bc − bC)KL + (bK + CL)2 < 0 and
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A QS has 2 equilibria in the following four cases:

1) If bC − Bc ̸= 0, aC − Ac = 0 and (aB − Ab)L ̸= 0, then the
two equilibria are (0,1/2 + L) = (1,1/2 + L) and
(0,1/2 − L) = (1,1/2 − L). In these two equilibria the system is
not C1. The local phase portraits at the four points in the plane
(0,1/2 + L), (1,1/2 + L), (0,1/2 − L) and (1,1/2 − L) satisfy
the Berlinskii Theorem.
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2) If bC − Bc ̸= 0, Ab − aB = 0 and (aC − Ac)K ̸= 0, then the
two equilibria are (1/2 + K ,0) = (1/2 + K ,1) and
(1/2 − K ,0) = (1/2 − K ,1).

In these two equilibria the system
is not C1. The local phase portraits at the four points in the
plane (1/2 + K ,0), (1/2 + K ,1), (1/2 − K ,0) and (1/2 − K ,1)
satisfy the Berlinskii Theorem.
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3) If bC − Bc ̸= 0, K = 0 and (aB − Bb)L ̸= 0, the two equilibria
are (1/2,1/2 + L) and (1/2,1/2 − L).

Moreover both equilibria
are saddle-nodes.
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4) If bC − Bc ̸= 0, (aC − Ac)K ̸= 0 and L = 0, the two equilibria
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Moreover both equilibria
are saddle-nodes.
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A QS has 1 equilibrium point in the following four cases:

1) If bC − Bc ̸= 0 and K = L = 0, then the QS has the
equilibrium (1/2,1/2).

If we translate this equilibrium to the origin of coordinates, the
quadratic system becomes the homogeneous quadratic system
ẋ = bx2 + cy2, ẏ = Bx2 + Cy2. And all the homogeneous
quadratic systems have been classified.
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2) If bC − Bc ̸= 0 and aC − Ac = Ab − aB = 0 then the QS has
the equilibrium (0,0) = (1,0) = (0,1) = (1,1).

But in this equilibrium the system is not C1.

The local phase portraits at the four points in the plane (0,0),
(1,0), (0,1) and (1,1) satisfies the Berlinskii Theorem.
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3) If bC − Bc ̸= 0, Ab − aB ̸= 0 and aC − Ac = L = 0, then the
system has the equilibrium point (0,1/2) = (1,1/2).

But in this equilibrium the system is not C1,

If b ̸= 0 the “two equilibria” are semi-hyperbolic saddle-nodes.

If b = 0 the “two equilibria” are nilpotent cusps.
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The QS has infinitely many equilibria under the following
conditions:

bC − Bc = 0 and either A = B = C = 0, or a = b = c = 0, or
aB − Ab = 0, or aC − Ac = 0.
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conditions:

bC − Bc = 0 and either A = B = C = 0, or a = b = c = 0, or
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The following results obtained for the quadratic systems in the
plane R2 also hold for the continuous quadratic differential
systems on the 2-dimensional torus

if the closed curve defined
by a periodic orbit can be deformed in a continuous way to a
point on the surface of the torus. With other words if the closed
curve defined by a periodic orbit is contractible on the surface
of the torus.

1) There exists a unique equilibrium point in the interior of the
region homeomorphic to a disc limited by a periodic orbit. If the
periodic orbit is a limit cycle this equilibrium is a focus, and if
the periodic orbit is not a limit cycle this equilibrium is a center.

2) Two periodic orbits are oppositely oriented if the regions
homeomorphic to a disc limited by them have no common point.
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3) If the differential system has two equilibrium points which are
either foci, or centers, then they are oppositely oriented.

For a proof of all these properties see the paper:

W.A. Coppel, A Survey of Quadratic Systems, J. Differential
Equations 2 (1966), 293–304.
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THEOREM. (A) For the continuous QS on the 2-dimensional
torus from a Hopf bifurcation at most bifurcates one limit cycle.

(B) The next configurations of contractible limit cycles to a point
are the unique that the continuous QS on the 2-dimensional
torus can exhibit.
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(a) (b) (c) (d)

Figure: All the configurations of the contractible limit cycles of the
continuous quadratic differential systems. If [x ] denotes the integer
part function, then figure (a) takes place when [K ] < 1/2 and
[L] < 1/2, figure (b) takes place when 1/2 < [K ] and 1/2 < [L], figure
(c) takes place when [K ] < 1/2 and 1/2 < [L], and figure (d) takes
place when 1/2 < [K ] and [L] < 1/2.
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In the proof of the previous THEOREM play a main role the
following result:

For the quadratic systems having four equilibria, if a focus is
surrounded by one limit cycle, then there can be at most one
limit cycle surrounding the other focus.

A. Zegeling and R.E. Kooij, The Distribution of limit cycles in
quadratic systems with four finite singularities, J. Differential
Equations 151 (1999), 373–385.
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For the differential system

ẋ = bx(x−1), ẏ = A+Bx(x−1)+Cy(y−1), with Ab ̸= 0,

on the 2-dimensional torus has the circle x = 0, or equivalently
the circle x = 1 as a non-contractible limit cycle.
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For the differential system

ẋ = a+bx(x−1)+cy(y−1), ẏ = Cy(y−1), with aC ̸= 0,

on the 2-dimensional torus has the circle y = 0, or equivalently
the circle y = 1 as a non-contractible limit cycle.

We conjecture that these configurations are all the
configurations of the limit cycles for the continuous quadratic
differential systems on the torus T2
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The end

THANK YOU VERY MUCH FOR YOUR ATTENTION
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