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Abstract
We give a necessary condition for the orbital-reversibility of a planar system, namely, the
existence of a normal form under equivalence which is reversible to the change of sign in the
first variable. Based in this condition, we formulate a suitable algorithm to detect orbital-
reversibility and we apply the results to solve the center problem in a family of planar nilpotent
systems.
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1 Introduction

Consider a planar autonomous system of differential equations having an equilibrium point at the
origin given by
x = F(x), (1.1)

T € R2. We study if it admits some reversibility modulo C*-equivalence (see [1]

where x = (z,y)
and [2]).

The problem of determining if system (1.1) has some reversibility is consider in [3] and [4].
In this work, we study if there exists some time-reparametrization such that the resulting system
admits some reversibility. The existence of some orbital-reversibility is a valuable feature that
helps in the understanding of the dynamical behaviour of a given system.

Next, we give a precise definition of the reversibility we will deal with:

An involution is a local diffeomorphism o € C*, such that 0 o 0 = Id, 0(0) = 0 and
codim(Fix(o)) = 1, where Fix(0) = {x € R" : 0(x) = x} is the fixed point set of o.
We say that system (1.1) is reversible if there exists some involution ¢ such that ¢ . F = —F.

We say that system (1.1) is orbital-reversible if there exist an involution ¢ and a function
w € C, with u(0) = 1 such that o , (uF) = —uF, (this means that F is reversible modulo a
time-reparametrization).

We have denoted the pull-back of a vector field of F by a transformation ® as ® , F. If we
use a generator of the transformation, the notation U ., F := ® , F will be used instead. The
transformed system can be expressed in terms of nested Lie products. Let us define TI(J0 )(F) =F,

and
l times

TP(F) = TV (F, U]) :ﬁ F,U],---,U]= [T{}*”(F),U , forl>1.

If we use both, a nonlinear time-reparametrization dt = p(x)dT and a near-identity transfor-
mation with generator U(x), then the transformed vector field is given by:

U (1+p)F)=U . F+uF + u[F, U]+ (Vu-U)F + %[[MF7U],U] +oee (1.2)

In our study, we assume a quasi-homogeneous expansion for the vector fiel F corresponding to
a type t = (t1,t2) € N2, So, we can suppose that F is of the form

F(x) =F,(x) + Fr41(x) +---, for some r € Z, (1.3)



where the lowest-degree quasi-homogeneous term F, # 0 is R,-reversible, and F,, € QY 4 for
all k e N.

2 Some Definitions and Main Result

In this section, we introduce some definitions and we present our important result.
Firstly, we introduce the following vector spaces:

o O = {u € Pt : u(—z,y) = —p(z,y)}, the set of quasi-homogeneous scalar functions of
degree k which are odd in the first variable.

o & ={pePf:p(—z,y) = u(z,y)}, the set of quasi-homogeneous scalar functions of degree
k which are even in the first variable.

e R ={F = (PQ)T € Qf : P e &,,,Q € Of_, }, the set of R, reversible quasi-
homogeneous vector fields of degree k.

e St = {F = (PQ)7" € Qf : Pe0,Q € &,} the set of R,~symmetric quasi-
homogeneous vector fields of degree k.

It is easy to deduce that Pf = Ot @ EF and QF = RE @ Sf. This decomposition allow us to
define the corresponding projection operators as follows:

() € @Oz, ® () e @, for pe @Pﬁ, and
e e

n®w) e Pry, 01U) e @, Sk, for Ue ;.
k k

The main goal of this paper is to determine conditions for the orbital-reversibility of (1.3),
which will be based on the existence of a near-identity transformation ® = Y7, ®;, (®; € Q%),
and a scalar function p € C*°, with p(0) = 1, such that ® ., (uF) is R,-reversible.

For our convenience, from now on we will write the time-reparametrization as 1 4+ p, with
((0) = 0. Indeed, it will be written as 1+ .-, p1j, where p1; € P} for j > 1.

Definition 1 We say that the vector field of system (1.3) is N-orbital-reversible (N € N) if there
exist a vector field U € @5, Q% and a scalar function p € D1 P, such that "N (U L. ((1+
w)F)) is Ry-reversible. B

Our idea is to adapt the normal form procedure in order to determine conditions under which
the normalized vector field is N-orbital-reversible. We introduce the Lie derivate along the lowest-
degree quasi-homogeneous term F',.:

fk_r : 'P]:fr — 7315 _
HUk—r — Vlffkfr . Fr~

In the normal form reduction it is enough to take its quasi-homogeneous terms puj belonging to
Cor(f;—,) (a complementary subspace to Range({x_.)).
We denote R R R
R :=REN QY and OF := Of N Cor(4_,),

where @}C is a complementary subspace to Ker(ﬂk_T)FT in O}.
Next, we plain to deduce some facts about the normal forms for orbital-reversible vector fields.
To this end, we use that Qf = Rt @ S, which allows to write the vector field (1.3) as:

F = Fr + Z(FT+J’ + Ff’+j)v (2.4)
j=1

where F,; = IT(F,;;) € Rt and F,; = I®)(F, ;) € St ..
To describe a normal form procedure well adapted to the orbital-reversibility problem, let us

denote the above vector field as

F(O) —F = Fﬁo) + (];“5021 + ];“5221) 4o



We observe that the lowest-degree quasi-homogeneous term is reversible: F&O) € RE.

We define the homological operator Z(m) as,

Z(l)

: 7%5 X (5{ — Sﬁ_,_l
(fjla /11) — —[F$0)7ﬁ1] - ﬁlf‘gO)a
and

2 Ker(™ V) x (RE,OF) — St

r+m
m—1
o ~ = ~ - ~ - —1) - ~ a(m—1
(Ulaﬂlla"’7Um—laﬂm—1;Uma,Ufm) —_— - Z[FET] )7Um—j] *ﬂm—ng»_:j )
7=0

It is evident that operator ™ depends on Fﬁ.m), e 7F£712n_1.
The following result characterizes the (N 4 1)-orbital-reversibility of a vector field N-orbital—
reversible. Proceeding degree by degree and following the ideas of the classical normal form theory,

we obtain an algorithm to discarding cases the orbital-reversibility based of the next theorem.

Theorem 2 Let us consider a vector field F = F,+-- ~+FT+N_1 —|—(]§‘T+N—|—FT+N)+- -+, satisfying
F,..n #0 and Projlm(zW))(FHN) =0, for some N € N. Then, F is not orbital-reversible.

3 Application

Let us consider the following family of planar vector fields:

i\ y a1y + agx?dt?
( 9 ) = ( oplat >+ ( biy? + bpa2dtly ) (3.5)
where 0 = £1, ¢ € N.
This family has been studied by several authors. Namely, the analytic integrability for this
family has been studied in [5]; the center problem for ¢ = —1 (which corresponds to the mon-

odromic situation) has been partially studied in [6]; and the reversibility problem is completely
solved in [3]. With respect to the orbital-reversibility problem, we have the following result:

Theorem 3 System (3.5) is orbital-reversible if and only if one of the following conditions is
satisfied:

(a) aa =by=0.

(b) az =a; =b1 =0, by #0.

(c) a1 =b1 =0, ay #0.

(d) a1 +2b; =bs+2(qg+ 1)as =0, azb; #0.

(e) b2 = (2g + 1)az, by = (2¢ + 1)a1, az(ar + 2b1) # 0.

Proof:
The vector field of the statement can be written as F = F,. + F,., 1, where

B, = (y, 0007

€ ng, and F,. € Q;q_;_l,

being r = 2¢ and t = (1,2 + 1). We observe that ng is Ry~ and Ry-reversible. It is enough to
study the R,— and the R —orbital-reversibility of the vector field F.

(%) We start with the R —orbital-reversibility. As we will see later, in this case is sufficient to reach

the N = 8-orbital-reversibility to solve the orbital-reversibility problem. To reduce the vector
field of the statement to the normal form F(®) we take the generator

2 4 8
~ o 0 4T t
0= () (b )+ (2 ) e
j=



and the time-reparametrization associated to
8
fi =z + 732" +v52° + 72’ € @O§’
Jj=1

where «; and ~; are arbitrary parameters. Using Maple in the computations, we obtain the
following normal form:

) ) o _ 1 0
8 2
F® = U.. (1+4)F)=Fy+Foi1 + (Fagiz — 30053 3))\( ) ( 22+ ))

N N o 0
Fogrs + (F AW
+ 2q+3 + ( 2q+4 + 3(4q ¥ 5)(4(] + 3)3 ( x2q+4y ))

. . 0
+F2q45 + (Faqi6 + A ( 20+64 > )

. . 0
+Foq 17+ (Fagis +AY < 22048y >) o

So, by applying Theorem 2, if F is orbital-reversible then the coefficients A(?) must vanish.
The first normal form coefficient A\(27) is:

A2 = ay((2¢ 4 3)(2q + 1)ay + 2qb1) + bz (2qa; — 3b1). (3.6)
To study the vanishing of this coefficient, we consider the following two possibilities:
(1) 2ga; — 3b; = 0, and then A\(?) vanishes in a couple of cases:
(1a) a2 = 0. In this case, the next normal form coefficient is
AW = gbyaf,

which vanishes if b, = 0 (in this case, covered in item (a), the system is R, -reversible),
or if a; = 0 (now, the system is R,-reversible; this situation is described in item (b)).

(1b) a2 # 0, (29 + 3)(2¢ + 1)a; + 2¢by = 0, which provides a; = by = 0. In this case the
system is R,-reversible. This is the situation described in item (c).

(2) 2ga; — 3b; # 0, and then A\(?) vanishes if, and only if,

(2¢ +3)(2g + 1)as + 2gby
b = -— . .
2 2qa1 — 3b1 @2 (3 7)

For this value, the next normal form coefficient is

4943

PN GO
2(]01 - 3b1 a2

(al + 2b1)(b1 - (2q + 1)611)194(@2, ai, b17 q, U)a
where we have denoted

pa(az, ar,bi,q,0) = 3(2q + 5)(4g + 3)°((2q + 3)(4dg + )ar — (4q +9)b1)a3
+0(2qa; — 3b1)(2¢(120¢* + 202q + 49)a? — (512¢* + 844q + 135)a by + 5(52q + 81)b3).

The vanishing of A leads to some subcases:
(2a) ag =0, which implies bo = 0 . We get again item (a).

(2b) ag # 0, a3 +2b; = 0. This hypothesis implies that b; # 0 (otherwise, a; = b; = 0). Moreover,
the equation (3.7) reduces to by = —2(q¢ + 1)az. Now, the system (3.5) is Hamiltonian, with
Hamiltonian )

o
h = T2 T a2 e 2¢+2,,
(z,y) = —3y Tt They — ety

If we denote u = z, v = y — 2bjzy + a22?9T2, then system (3.5) becomes:
U = v,
agutatt — pio?

0= ottt (g + 1)ad - 2oyt 4 2o

which is R,-reversible (item (d)).



(2¢)

(2d)

(%)

as(a; +2by) # 0, by = (2¢+ 1)a;. Now, the equation (3.7) reduces to by = (2g + 1)as.

In this case, it is more convenient to work with system (3.5) with the transformation z = w,
y=0v(l+au)?t ie.:

o(1 + a1u)?72 + agu?t?,

gulatl (2¢ + 1)aq 20+,
(1 + aju)2at? 1+ aju '

=g
I

The time reparametrization dT' = (1 + a; X )??dt and the transformation X = T Y =0,
yield

X/ = Y —|— a2X2q+2,
Y = oXM 4 (24 1)aps X2y,
which is Rx-reversible (item (e)).

az(a1 + 2b1)(by — (2¢ 4+ 1)ay) # 0, pa(az,a1,bi,q,0) = 0. In this case, both coefficients \(©)
and A® can not vanish simultaneously, and the vector field is not orbital-reversible.

The situation with the R,—orbital-reversibility does not include any new case.

From the proof of the theorem, we obtain that system (3.5) is orbital-reversible if, and only if,

it is

8-orbital reversible.
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