
The Study of Isochronicity and Critical Period Bifurcations

on Center Manifolds of 3-dim Polynomials Systems Using

Computer Algebra

Matej Mencinger1,2, Brigita Ferčec3
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Abstract

Using the solution of the center-focus problem from [4], we present the investigation of
isochronicity and critical period bifurcations of two families of cubic 3-dim systems of ODEs.
Both cubic systems have a center manifold filled with closed trajectories. The presented study
is performed using computer algebra systems Mathematica and Singular.
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1 Introduction

The main topic of our work is the investigation of the quadratic 3D system of ODEs

u̇ = −v + au2 + av2 + cuw + dvw,
v̇ = u+ bu2 + bv2 + euw + fvw,
ẇ = −w + Su2 + Sv2 + Tuw + Uvw,

(1)

with real coefficients a, b, c, d, e, f, S, T and U . System (1) was studied already in [4], and further
in [5], [8], where planar polynomial systems of ODEs appearing on the center manifold of (1) were
investigated.

We present the criteria on the coefficients of the system to distinguish between the cases of
isochronous and non-isochronous oscillations, considered in [5] and [8]. Bifurcations of critical
periods of the system are studied as well. Both phenomena as well as the linearization and the
derivation of the period function (2) and the linearizability quantities are defined in the following
section.

In order to study the period function

T (r) = 2π

(
1 +

∞∑
k=1

Tkr
k

)
(2)

of the centers on the center manifolds and obtain the necessary and sufficient conditions of
isochronicity of the centers and to describe the critical period bifurcations (c.f. [10]) we have
used the computer algebra system Mathematica and the special purpose computer algebra sys-
tem Singular [7], which has powerful routines for analyzing polynomial ideals, to find the zero
sets (varieties) of the obtained polynomial ideals. To obtain the corresponding ideals we used the
polar coordinate approach as well as the complexification method for two dimensional polynomial
systems (both explained in the following section). It turns out [10] that the isochronicity problem



can be reduced to the linearizability problem, so we can reduce the problem of isochronicity to
finding the variety of the ideal generated by (all) linearizability quantities, ikk, jkk, k = 1, 2, . . .,
which are of polynomial dependence on the parameters of (1). On the other hand we can consider
directly the isochronicity ideal, generated by coefficients Tk (which are also of polynomial depen-
dence on the coefficients of (1)). We denote the so called linearizability ideal (generated by all
linearizability quantities ikk, jkk, k = 1, 2, . . .) by

L = 〈i11, j11, i22, j22, . . .〉 (3)

and LK = 〈i11, j11, i22, j22, . . . , iKK , jKK〉. To solve the problem of linearizability means to find an
integer K ≥ 1 such that V (L) = V (LK) (i.e. the variety of the linearizability ideal equals to the
variety of the ideal generated by first K pairs of linearizability quantities). For this we compute the
irreducible decomposition of V (LK) and using appropriate methods show that all systems from
each component of the decomposition are linearizable (implying the obtained conditions being
sufficient).

2 Definitions

The linear part of system (1) at the origin has two pure imaginary and one non-zero (real) eigen-
value. By definition a Ck-manifold W c ≡W c(0, U) in a neighborhood U of 0 is said to be a center
manifold of (1) if W c is invariant under the flow as long as the solution remains in U and W c

is the graph of a Ck-function w = h(u, v) which is tangent at 0 to the (u, v)-space. There is a
fundamental theorem (c.f. [2]) which implies that there exists a neighborhood U of 0 such that
there exists a local center manifold W c of (1). Note that on any local center manifold, w = h(u, v),
system (1) becomes a two dimensional (real) system, which can be put in the form

u̇ = −v + P (u, v) ,
v̇ = u+Q (u, v) .

(4)

Usually for real two dimensional polynomial systems of the form (4) with maximal degree n the
qualitative analysis is done either by introducing x = u+ iv and y = x = u− iv and obtain the so
called complexification

ẋ = x−
n−1∑

p+q=1

ap,qx
p+1yq, ẏ = −y +

n−1∑
p+q=1

bq,px
qyp+1,

for which the linearizability problem is to decide whether the system can be transformed to the
linear system Ẋ = X, Ẏ = −Y by means of a formal change of the plane variables

X = x+

∞∑
m+j=2

u
(1)
m−1,j(a, b)x

myj , Y = y +

∞∑
m+j=2

u
(2)
m,j−1(a, b)xmyj . (5)

If such a transformation exists we say that the system is linearizable.
Differentiating with respect to t on both sides of the above two equalities and substituting the

complexification in the resulted equalities and then using (5) and the original system (4) yields

(after equating coefficients of the same powers) a linear recurrence system for u
(1)
m−1,j and u

(2)
m,j−1.

It turns out (see [10], p. 191) that u
(1)
q1,q2 and u

(2)
q1,q2 can be computed whenever q1 6= q2. For

q1 = q2 = k ∈ N some additional (polynomial) conditions, let’s say ikk = 0 and jkk = 0 must be
fulfilled. The quantities ikk and jkk are called k-th linearizability quantities. They generate the
linearizability ideal defined above.

If P and Q in (4) are polynomials of degree at most n without constant and linear terms, it
is convenient to introduce the polar coordinates u = r cosϕ, v = r sinϕ and find the so-called
Poincaré return map R (r), defined by the equation of the trajectories

dr

dϕ
=

r2F (r, cosϕ, sinϕ)

1 + rG (r, cosϕ, sinϕ)
= R (r, ϕ) . (6)

The function R (r, ϕ) is periodic (with the least period 2π in variable ϕ) and analytic for (small
enough) |r| < r∗ (and all ϕ); [8]. Thus, we can expand R (r, ϕ) in a convergent power series in r
to obtain

dr

dϕ
= r2R2 (ϕ) + r3R3 (ϕ) + · · · . (7)



One can choose (c.f. [8]) the line segment Σ = {(u, v) ; v = 0, 0 ≤ u ≤ r∗}, where r∗ is chosen to
be small enough, to consider the first return of (6) from r (ϕ = 0) = r0 to r (ϕ = 2π) = R (r0).

Expanding r (ϕ, r0) into a (for all ϕ ∈ [0, 2π] and all |r0| ≤ r∗ convergent) power series in r0
one obtains

r (ϕ, r0) = w1 (ϕ) r0 + w2 (ϕ) r20 + w3 (ϕ) r30 + · · · ,

which is a solution of (7) and inserting r (ϕ, r0) into (7) yields recurrence differential equations for
functions wj (ϕ) , defining the Poncaré return map

R (r0) := r (2π, r0) = r0 + w2 (2π) r20 + w3 (2π) r30 + · · · .

Obviously, zeros of the difference function P (r0) = R(r0) − r0 correspond to closed orbits. In
particular, isolated zeros correspond to limit cycles and if P (r0) ≡ 0 the system has a center at
the origin, yielding the conditions wj (2π) = 0 for all j > 1.

Suppose the origin is center for system (4) and that the number r∗ > 0 is so small that the line
segment Σ = {(u, v) ; v = 0, 0 ≤ u ≤ r∗} lies wholly within the period annulus. For r satisfying
0 < r < r∗, let T (r) denote the least period of the trajectory through (u, v) = (r, 0) ∈ Σ. The
function T (r) is the period function of the center. If T (r) is constant, then the center is said to
be isochronous. It turns out (c.f. [10], p. 176-180) that T (r) from (2) can be written in the form

T (r) = 2π(1 +

∞∑
k=1

p2kr
2k). (8)

Finally, note that any value r > 0 (r < r∗) for which T ′(r) = 0 is called a critical period. When
we consider bifurcations of critical periods we are interested in an upper bound of the number of
critical periods in small neighborhood of the singular point; it is the so-called problem of critical
period bifurcations, considered for the first time in [1].

For computing the irreducible decomposition of an ideal a modular approach can be used. The
Singular routine (c.f. [3]) minAssGTZ, which is based on the algorithm of [6], involves multiple
computations of Gröbner bases which are extremely time and memory consuming, especially for
large polynomials which is ususally the case in computations mentioned above. Thus, the routine
minAssGTZ very seldom is able to complete computations and return minimal associate primes
in cases of non trivial ideals (generated for instance by focus or linearizability quantities or the
coefficients, Tk, of the period function (2)) when computing over the field of rational numbers.
To overcome the difficulty the modular approach described in [9] has proved to be very efficient.
Following the approach one first computes minimal associate primes over a field Zp of a prime
characteristic p (usually p = 32003 is taken), and then lifts the obtained decomposition to the
polynomial ring of characteristic zero using the rational reconstruction algorithm of [11] applied in
Mathematica.

3 Main results

Edneral et al. [4] studied the dynamics of trajectories at the center manifold for the system (1).
They found five conditions for the existence of a center on the center manifold:

1. S = 0;

2. a = b = c+ f = 8c+ T 2 − U2 = 4(e− d)− T 2U2 = 2(e+ d) + TU = 0 and S = 1;

3. a = b = c = f = d+ e = 0 and S = 1;

4. d+ e = c = f = T − 2a = U − 2b = 0 and S = 1;

5. c = d = e = f = 0 and S = 1.

In the sequel, for cases 1. and 4. (defined above) we state some results on isochronicity and
critical period bifurcations of a center on the center manifold of (1).

Case 1. Obviously w = 0 is a center manifold and the corresponding 2D system is

u̇ = −v + a
(
u2 + v2

)
,

v̇ = u+ b
(
u2 + v2

)
.

(9)



Isochronicity of (9) was studied in [8] by introducing the polar coordinates. Following the procedure
described in the previous section we find that T2 = 2π

(
a2 + b2

)
. Thus, we see that the necessary

condition for isochronicity of system (9) is a = b = 0, which, obviously, is also the sufficient
condition. To obtain some information about critical periods of system (9) we investigate the
derivative, T ′(r) = 2T2 (a, b) r + 3T3 (a, b) r2 + · · · , of the period function (2). Critical periods
of system (9) are zeros of T ′ (r) = 0. Recall that series (2) converges for r small enough. Note
that the coefficients Tk regarded as polynomials in variables a and b are homogeneous. Since
T2 = 2π

(
a2 + b2

)
> 0 for all (a, b) near the origin, by [10], Lemma 6.4.2, we have the following

result.

Theorem 3.1. System (9) has an isochronous center if and only if a = b = 0 and no critical
periods bifurcate from centers of system (9).

Case 4. On the center manifold u2 + v2 − w = 0 (c.f. [4]) the corresponding 2D system reads

u̇ = −v + (a+ dv)
(
u2 + v2

)
,

v̇ = u+ (b− du)
(
u2 + v2

)
.

(10)

The isochronicity problem and the related problem of linearizability seem to be at first glance
two different problems. However, according to a theorem of Poincaré and Lyapunov (see e.g.
Theorem 4.2.1 in [10]) these two problems are equivalent.

In (10) after substituting

a11 = b11 = d, a01 = −b+ ia and b10 = −b− ia (11)

one obtains system
ẋ = i(x− a11x2y − a01xy),
ẏ = −i(y + b11xy

2 + b10xy),
(12)

where akj , bkj ∈ C.
We divide by i and consider akj , bkj as independent parameters (not necessary satisfying condi-

tion (11)) and y as an independent unknown function (not necessary satisfying the condition y = x)
and solve the problem of linearizability for this more general system, obtaining the following result.

Theorem 3.2. System (12) is linearizable if and only if one of the following conditions holds:

1) a01b10 + b11 = b10 = a11 − b11 = 0;

2) a01b10 + b11 = a01 = a11 − b11 = 0.

The Darboux linearization in the proof of the above theorem (see the proof of Th. 2 in [5])
yields the following first two isochronicity quantities for real system (10):

p2 = a2 + b2 + d

p4 = −2(a2 + b2)2.
(13)

Now, we obtain some information about critical periods of system (10) investigating the derivative
T ′(r) of period function.

Theorem 3.3. If in system (10)
d = −a2 − b2 (14)

then one critical period bifurcates from the origin after small perturbations.

Proof. Inserting (13) into T ′(r) we obtain

T ′(r, (a, b, d)) = 2p2(a, b, d)r + 4p4(a, b, d)r3 + · · · . (15)

Let system (10) with parameters a = a∗, b = b∗, d = d∗ satisfies condition (14), that is, d∗ =
−a∗2 − b∗2. If a∗2 + b∗2 6= 0, then p4 < 0. Choosing d > −a2 − b2 and sufficiently small we
obtain p2 > 0 and |p2| � |p4|, yielding a system with a small root of T ′(r) near the origin. If
d = a = b = 0 then we first perturb the system in such a way that d = −a2−b2 and then apply the
perturbation described above, again obtaining a critical period of the period function in a small
neighborhood of the origin.



Corollary 3.4. System corresponding to the fourth case above has isochronous center if and only
if a = b = d = 0.

From the real system (10) computing we find T2 = a2 + b2 + d and T4 = −2
(
a2 + b2

)2
. By

results of [10], p. 287-295, to prove that at most one critical period bifurcates from a center it is
sufficient to show that T2k ∈ 〈T2, T4〉 for all k > 2. However, using its complex form (12) one can
prove the equivalent statement, namely: p2k ∈ 〈p2, p4〉 for all k > 2. In [8], Th. 3.5, the following
theorem is proved:

Theorem 3.5. At most one critical period bifurcates from centers on the center manifold of system
(10) after small perturbations.
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