Thurston Spider Maps for Chebyshev Polynomials Approximating Cosine

Schinella D'Souza University of Michigan

Summary

- Introduce a parametrized family of Chebyshev polynomials that approximate cosine
- Construction of Thurston spider map for each polynomial
- Conditions for when map is unobstructed

Background Definitions

- Polynomial $p : \mathbb{C} \to \mathbb{C}$, $\deg(p) \ge 2$:
- Filled Julia Set: $K_p := \{z \in \mathbb{C} \mid z, p(z), p^{\circ 2}(z), \dots \text{ bounded} \}$
- Julia Set: $J(p) := \partial K_p$
- Fatou Set: $\mathbb{C} J(p)$

Background Definitions

• Thurston obstruction: type of multicurve that is a barrier to TE to a rational function

Chebyshev Polynomials

- **Chebyshev polynomial**: T_n such that $T_n(\cos \theta) = \cos n\theta$
 - $T_1(z) = z$
 - $T_2(z) = 2z^2 1$
 - $T_3(z) = 4z^3 3z$
 - $T_4(z) = 8z^4 8z^2 + 1$
 - $T_5(z) = 16z^5 20z^3 + 5z$

 $3 - 3_{7}$

A Family of Chebyshev Polynomials

Chebyshev polynomial: T_n such that $T_n(\cos\theta) = \cos n\theta$

Family of Interest: $f_{2n,\lambda}(z) = \lambda(-1)^n$

$${}^{n}T_{2n}\left(\frac{z}{2n}\right)$$
 where $n \in \mathbb{Z}_{+}, \quad \lambda \in \mathbb{C} \setminus \{0\}$

A Family of Chebyshev Polynomials

Chebyshev polynomial: T_n such that $T_n(\cos \theta) = \cos n\theta$

Family of Interest: $f_{2n,\lambda}(z) = \lambda(-1)^n$

$${}^{n}T_{2n}\left(\frac{z}{2n}\right)$$
 where $n \in \mathbb{Z}_{+}, \quad \lambda \in \mathbb{C} \setminus \{0\}$

A Family of Chebyshev Polynomials

- **Chebyshev polynomial**: T_n such that $T_n(\cos\theta) = \cos n\theta$
- **Family of Interest:** $f_{2n,\lambda}(z) = \lambda(-1)^n$

$$n = 2$$

$${}^{n}T_{2n}\left(rac{z}{2n}
ight)$$
 where $n \in \mathbb{Z}_{+}, \quad \lambda \in \mathbb{C}$

n = 3

Properties
$$f_{2n,\lambda}(z) = \lambda(-1)^n T_{2n}\left(\frac{z}{2n}\right)$$

Critical Points:
$$2n - 1$$
 of the form $z = 2n \cos\left(\frac{k\pi}{2n}\right) \in (-2n, 2n)$

Critical Values: $\pm \lambda$

Critical Orbits: For example, for n = 3

of this Family

Some Results and References

- Bielefeld, Fisher, Hubbard (1992): Classifying critically preperiodic polynomials
- Hubbard, Schleicher (1994): Spider algorithm for quadratic polynomials
- Mukundan (2023): Dynamical approximation of PSF exponentials
- Mukundan, Prochorov, Reinke (2023): Dynamical approximation of PSF entire maps

Thurston Spider Map: Quadratics Quadratic polynomial: $f_{2,\lambda}(z) = -\lambda T_2\left(\frac{z}{2}\right)$ $0 \mapsto \lambda \mapsto \cdots$

Let $\theta \in \mathbb{Q}/\mathbb{Z}$ periodic of period k.

 θ -Spider: I)

$$\mathbb{S}_{\theta} := \{ r e^{2\pi i \cdot 2^{j} \theta} | r \ge 1, \quad j \in \mathbb{N} \}$$

Extended θ -Spider: ii)

$$\tilde{\mathbb{S}}_{\theta} := \mathbb{S}_{\theta} \cup \{ t e^{2\pi i \cdot \theta/2} \,|\, t \in \mathbb{R} \}$$

Thurston Spider Map: Quadratics

Build a Thurston map:

Thurston Spider Map: Quadratics

Build a Thurston map:

2. View as halves on sphere

Thurston Spider Map: Quadratics

 $z_1 \mapsto z_2$ $z_2 \mapsto z_2$

Build a Thurston map:

3. Cut legs and apply f_{θ}

4. Alexander trick + glue

→ Thurston mapping $\tilde{f}_{\theta}: S^2 \to S^2$ of degree 2

 ∞

 $P_{\tilde{f}_{\theta}} = \{z_0, z_1\}$

$\frac{\theta+1}{2} = i$

Thurston Spider Map: Quadratics Kneading Sequence: $K(\theta) := \{a_j\}$ s.t. $a_j = \begin{cases} A & 2^{j-1}\theta \in A \\ B & 2^{j-1}\theta \in B \end{cases}$

Theorem (Bielefeld, Fisher, Hubbard):

- θ periodic: $\tilde{f}_{\theta}: S^2 \to S^2$ has no Thurston obstruction.

• θ preperiodic: f_{θ} has no Thurston obstruction iff all distinct postcritical points have distinct kneading sequences.

Thurston Spider Map: Degree 4 Chebyshev

Want: Thurston spider map based off $f_{4,\lambda}(z) = \lambda T_4\left(\frac{z}{4}\right)$

Given: $\theta \in \mathbb{Q}/\mathbb{Z}$. $\theta' := \theta + \frac{1}{2}.$

- 1. θ periodic, θ' preperiodic -
- 2. θ preperiodic, θ' periodic
- 3. θ preperiodic, θ' preperiodic

Disk of radius 4:

 $x_0 = 0$ $y_0 = 2\sqrt{2}$ $y'_0 = -2\sqrt{2}$

 $j \ge 1$: $y_{j} = e^{2\pi i \cdot 4^{j-1}\theta}$ $y_{j} = e^{2\pi i \cdot 4^{j-1}\theta'}$

 $(\theta, \theta')\text{-Spider:} \quad \mathbb{S}_{\theta, \theta'} := \{\text{legs with endpoints}\} \cup \{\infty\}$

Thurston Spider Map: Degree 4 Example

Extended (θ, θ') -Spider: $\tilde{\mathbb{S}}_{\theta, \theta'} := \mathbb{S}_{\theta, \theta'} \cup \{\text{pink and blue lines}\}$

Build a Thurston map:

Build a Thurston map:

2. View as quarters on sphere

χ,

Build a Thurston map:

3. Cut legs and apply $f_{\theta,\theta'}$

5. Put together maps from Step 4 Thurston mapping $\tilde{f}_{\theta,\theta'}: S^2 \to S^2 \text{ of degree 4}$

Kneading Sequence:

$$K(\theta) := \{a_j\} \text{ s.t. } a_j = \begin{cases} -2 & 4^{j-1}\theta \in " - \\ -1 & 4^{j-1}\theta \in " - \\ 1 & 4^{j-1}\theta \in "1" \\ 2 & 4^{j-1}\theta \in "2" \end{cases}$$

Theorem (D, 2023):

- θ or θ' periodic: $\tilde{f}_{\theta,\theta'}: S^2 \to S^2$ has no Thurston obstruction.
- θ and θ' preperiodic: $\tilde{f}_{\theta,\theta'}$ has no Thurston obstruction iff all distinct postcritical points have distinct kneading sequences.

Thurston Obstruction Example -2 **X**4 λ6 Xs • Yo $\chi_1 \mapsto \chi_2 \mapsto \chi_3 \mapsto \chi_4 \mapsto \chi_5 \mapsto \chi_6$ \downarrow Xz 2

$$\theta = \frac{67}{2016}$$
$$\theta' = \frac{1075}{2016}$$

Future Directions/Questions

$$f_{2n,\lambda}(z) = \lambda(-1)^n T_{2n}\left(\frac{z}{2n}\right)$$

- Thurston equivalence of $\tilde{f}_{\theta,\theta'}$ to $f_{4,\lambda}$
- Understand Thurston pullback map
- Convergence of Thurston pullback maps