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Thurston’s no wandering triangles theorem

Theorem (Thurston 1985)

A branch point of a locally connected Julia set of a quadratic
polynomial is eventually periodic or precritical.
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Wandering triangles for polynomials

Theorem (Blokh 2005)

If a cubic polynomial has a wandering non-precritical branching
point, then the two critical points are recurrent to each other.

Generalizations by Blokh, Childers, Levin, Kiwi, ...

Bernhard Reinke Transcendental Wandering Triangles



Wandering triangles for polynomials

Theorem (Blokh 2005)

If a cubic polynomial has a wandering non-precritical branching
point, then the two critical points are recurrent to each other.

Generalizations by Blokh, Childers, Levin, Kiwi, ...
Theorem (Blokh—Oversteegen 2008)

There exist cubic polynomials with wandering non-precritical
branching points.

Alternative proof by Buff-Canela—Roesch via pertubation of
postcritically finite polynomials.
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Transcendental version: branch points?
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Transcendental version: branch points?

Problem: for many transcendental entire functions, J(f) = C.

Bernhard Reinke Transcendental Wandering Triangles



Transcendental version: branch points?

Problem: for many transcendental entire functions, J(f) = C.

Bernhard Reinke Transcendental Wandering Triangles




Transcendental version: branch points?

Problem: for many transcendental entire functions, J(f) = C.
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Dynamic rays

A dynamic ray is a maximal injective curve v: (0,00) — /(f) with
f(y(t)) = oo as t — oo for all n >0
f"(y(t)) = oo as n — oo uniformly on [e, 00) for all € > 0
The endpoint / landing point of a ray is lim:_,oy(t) if it exists.
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A dynamic ray is a maximal injective curve v: (0,00) — /(f) with
B f"(y(t)) > oc0ast— oo foralln>0
B f"(y(t)) — oo as n — oo uniformly on [e, 00) for all € > 0
The endpoint / landing point of a ray is lim:_,o7(t) if it exists.

Theorem (RottenfuBer—Riickert—-Rempe—Schleicher 2011)

Let f be a post-singularly bounded entire function of finite order.
Then I(f) consists entirely of dynamic rays (possibly with
endpoints).
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A dynamic ray is a maximal injective curve v: (0,00) — /(f) with
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The endpoint / landing point of a ray is lim:_,o7(t) if it exists.

Theorem (RottenfuBer—Riickert—-Rempe—Schleicher 2011)

Let f be a post-singularly bounded entire function of finite order.
Then I(f) consists entirely of dynamic rays (possibly with
endpoints).

Question

Let f be a post-singularly bounded entire function of finite order.
Suppose zj is the landing point of three different dynamic rays. Is
it possible that zy is neither eventually periodic nor precritical?
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Transcendental wandering triangles

Question

Let f be a post-singularly bounded entire function of finite order.
Suppose zj is the landing point of three different dynamic rays. Is
it possible that zg is neither eventually periodic nor precritical?
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Transcendental wandering triangles

Let f be a post-singularly bounded entire function of finite order.
Suppose zj is the landing point of three different dynamic rays. Is

it possible that zg is neither eventually periodic nor precritical? )

Theorem (Alhabib—Rempe 2017)

This is not possible for the exponential family.
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Transcendental wandering triangles

Let f be a post-singularly bounded entire function of finite order.
Suppose zj is the landing point of three different dynamic rays. Is
it possible that zg is neither eventually periodic nor precritical? )
Theorem (Alhabib—Rempe 2017)

This is not possible for the exponential family.

V

Work-In-Progress (Canela—R.—Rempe)

It is possible for the family acos(y/z) + b.

v
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The family acos(y/z) + b

We consider the family f, p(z) = acos(y/z) + b
m critical points k%7 for k > 1
@ critical values a + b for k even, —a + b for k odd
m order 1/2, so RRRS applies
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The family acos(y/z) + b

We consider the family f, p(z) = acos(y/z) + b
m critical points k%7 for k > 1
@ critical values a + b for k even, —a + b for k odd
m order 1/2, so RRRS applies
If £, is post-singularly finite, then it is strongly subhyperbolic, so
it is docile (Mihaljevic-Brandt/Alhamed—Rempe-Sixsmith).
In particular for f, , post-singularly finite we have
® bounded dynamic rays land

@ repelling periodic points are landing points of dynamic rays
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Proof strategy

Start with f,, p, real post-singularly finite:

by = —ap ~ 32.55, f2(12) = 4n2, f((2k)?*7?) = 0
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Rays for repelling fixed point 3
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lterated preimages of 3
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Admissible maps

Pertubations of f,; 1, that preserve the figure below are admissible.
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(k,1)-configurations

An admissible map f has a (k, {)-configuration if the critical points
w,w' € {72 4r?} satisfy f¥(w) = w’ and fé(w') = a.
Idea: we perturb f iteratively interchanging the roles of 72, 472
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Construction of wandering triangle

Control ¢ landing point of rays seperating «, a—
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Construction of wandering triangle

Control £ landing point of rays seperating o, «— and a4
Under iterative (k,|)-perturbations f;, 1, , the “branch point” &, is
precritical with preperiod — oc.
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Construction of wandering triangle

Control £ landing point of rays seperating o, «— and a4

Under iterative (k,|)-perturbations f;, 1, , the “branch point” &, is
precritical with preperiod — oc.

Work-in-progress: show that for f, p = lim, . f;, p,. the limit
lim,— o0 &, is landing point of three dynamic rays.
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Construction of wandering triangle

Control £ landing point of rays seperating o, «— and a4

Under iterative (k,|)-perturbations f;, 1, , the “branch point” &, is
precritical with preperiod — oc.

Work-in-progress: show that for f, p = lim, . f;, p,. the limit
lim,— o0 &, is landing point of three dynamic rays.

Thank you!
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