Dynamical approximations of postsingularly finite entire maps

Nikolai Prochorov Aix-Marseille Université

Joint work with Malavika Mukundan and Bernhard Reinke

arxiv.org/abs/2305.17793

19 June, 2023

	Proc	horov	Niko	lai
--	------	-------	------	-----

Dynamical approximations

19 June, 2023

Notations and conventions

If f is an entire map, then

• S_f is a set of singular values of f;

• f is of finite type or belongs to class S if S_f is finite;

3 × 4 3 ×

Notations and conventions

If f is an entire map, then

- S_f is a set of singular values of f;
- f is of finite type or belongs to class S if S_f is finite;
- postsingular set of f is

$$P_f := \bigcup_{n \ge 0} f^{\circ n}(S_f);$$

• f is postsingularly finite if P_f is finite.

	Proc	horov	Niko	lai
--	------	-------	------	-----

Example

$$f(z) = c(1 - \exp(z^2))$$
, where $c = \sqrt{\ln 2}$

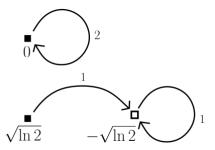
$$S_f = \{0, c\}$$
 and $P_f = \{-c, 0, c\}$

		(《曰》《曰》《曰》《曰》《曰》 [] []	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Prochorov Nikolai	Dynamical approximations	19 June, 2023	3/14

Example

$$f(z) = c(1 - \exp(z^2))$$
, where $c = \sqrt{\ln 2}$

$$S_f = \{0, c\}$$
 and $P_f = \{-c, 0, c\}$



Prochorov Nikolai

Dynamical approximations

Dynamical approximations

Example.

Dynamical approximation for the family $\{\lambda \exp(z) | \lambda \in \mathbb{C}^*\}$ were studied, for instance, in [Bodelon, Devaney, Hayes, Roberts, Goldberg, Hubbard'00].

Dynamical approximations

Example.

Dynamical approximation for the family $\{\lambda \exp(z) | \lambda \in \mathbb{C}^*\}$ were studied, for instance, in [Bodelon, Devaney, Hayes, Roberts, Goldberg, Hubbard'00].

$$\lambda \exp(z) = \lim_{d \to \infty} \lambda \left(1 + \frac{z}{d} \right)^d$$

< 4³ ► <

∃ ► < ∃ ►</p>

Dynamical approximations

Example.

Dynamical approximation for the family $\{\lambda \exp(z) | \lambda \in \mathbb{C}^*\}$ were studied, for instance, in [Bodelon, Devaney, Hayes, Roberts, Goldberg, Hubbard'00].

$$\lambda \exp(z) = \lim_{d \to \infty} \lambda \left(1 + \frac{z}{d} \right)^d$$
.

Further works by Fagella, Kisaka, Krauskopf, Kriete, Mihalević-Brandt, Morosawa...

Proc	horov	Nil	kolai

Theorem (Mukundan - NP - Reinke'23).

Let f be a postsingularly finite entire map, then there exists sequence of postsingularly finite polynomials (p_n) such that

• (p_n) converges to f uniformly on compacts;

Theorem (Mukundan - NP - Reinke'23).

Let f be a postsingularly finite entire map, then there exists sequence of postsingularly finite polynomials (p_n) such that

• (p_n) converges to f uniformly on compacts;

• $p_n|P_{p_n}$ are conjugate to $f|P_f$.

Theorem (Mukundan - NP - Reinke'23).

Let f be a postsingularly finite entire map, then there exists sequence of postsingularly finite polynomials (p_n) such that

• (p_n) converges to f uniformly on compacts;

• $p_n|P_{p_n}$ are conjugate to $f|P_f$.

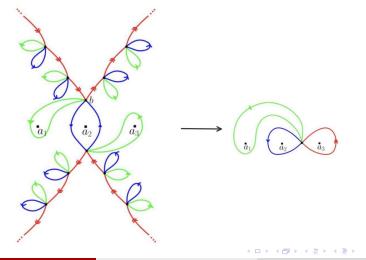
Maps of finite type and graphs

$$f(z) = c(1 - \exp(z^2)), \ c = \sqrt{\ln 2} \ \text{and} \ P_f = \{a_1, a_2, a_3\} = \{-c, 0, c\}.$$

	•		500
Prochorov Nikolai	Dynamical approximations	19 June, 2023	6/14

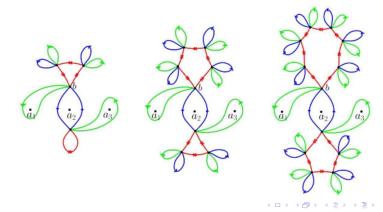
Maps of finite type and graphs

 $f(z) = c(1 - \exp(z^2)), \ c = \sqrt{\ln 2} \ \text{and} \ P_f = \{a_1, a_2, a_3\} = \{-c, 0, c\}.$



19 June, 2023

Sequence of graphs



Dynamical approximations

19 June, 2023

More elaborated formulation

 $f: (R^2, A)$ \bigcirc and $f_n: (R^2, A)$ \bigcirc , $n \in \mathbb{N}$ are Thurston maps and (f_n) converges combinatorially to f.

Theorem (Mukundan - NP - Reinke'23).

The sequence (σ_{f_n}) converges to σ_f locally uniformly on $\operatorname{Teich}(R^2, P_f)$.

Theorem (Mukundan - NP - Reinke'23).

If g is a postsingularly finite entire map Thurston equivalent to f, then there exists a sequence of postsingularly finite entire maps (g_n) converging locally uniformly to g, where g_n is Thurston equivalent to the map f_n for sufficiently large n.

Prochorov Nikolai	Dynamical approximations	19 June. 2023	8/14
			E ∽ar

When combinatorial/topological model is realized by holomorphic map?

Prochorov Nikolai

Dynamical approximations

19 June, 2023

< 47 ▶

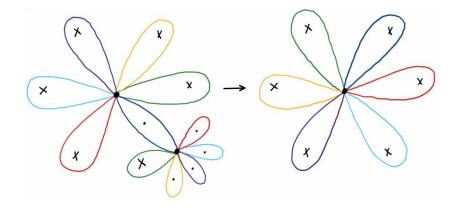
Family of maps	Authors	
Topological polynomials and	W.Thurston'80s, Douady-	
branched covering	Hubbard'93	
Topological multi-error maps	Hubbard-Schleicher-	
and their compositions	Shishikura'09, S. Shemyakov'22	
New families of maps having in-		
finitely many asymptotic tracts	NP'23	
and no critical points		

Moltes gràcies!

horov I	

・ロト ・ 四ト ・ ヨト ・ ヨト

One more example



$$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_6$$

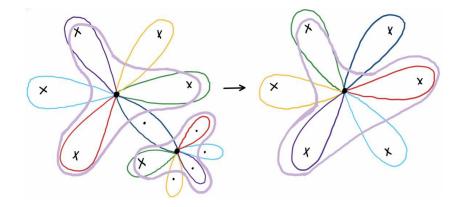
Prochorov Nikolai

Dynamical approximations

19 June, 2023

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の Q ()

Example of obstruction



		《曰》《圖》《臣》《臣》	≡ う∢ぐ
Prochorov Nikolai	Dynamical approximations	19 June, 2023	13 / 14

Definition of topologically holomorphic map

Definition.

We say that map $f : \mathbb{R}^2 \to \mathbb{R}^2$ is topologically holomorphic if for every $x \in \mathbb{R}^2$ there exists $k \in \mathbb{N}$, an open neighbourhood U and two orientation-preserving homeomorphisms $\psi : U \to \mathbb{D}$ and $\varphi : f(U) \to \mathbb{D}$ such that $\psi(x) = 0$, $\varphi(f(x)) = 0$ such that the diagram commutes

$$U \xrightarrow{f|U} f(U)$$
$$\downarrow^{\psi} \qquad \qquad \downarrow^{\varphi}$$
$$\mathbb{D} \xrightarrow{z \mapsto z^{k}} \mathbb{D}$$

horov N		