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Exponential family and continua

We are interested in indecomposable continua appearing in the
dynamics of the exponential map Eλ defined by

Eλ(z) = λez , λ ∈ C.

Definition
Continuum is a nonempty compact connected space.
An indecomposable continuum is a continuum that cannot be
represented as the union of two proper subcontinua (two
proper subsets that are continuum).
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Partition of the complex plane

Definition
Let (Rj)j∈Z be the partition of the plane defined by

Rj = {z ∈ C : (2j − 1)π − arg λ < Im(z) ≤ (2j + 1)π − arg λ}.

Let S : C −→ ZN be a function such that

S(z) = (s0s1s2 . . .) ⇐⇒ ∀k∈N E k
λ (z) ∈ Rsk .

If S(z) = s we call s itinerary of z .
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Points with the same itinerary

Definition
Let

I (s) = {z ∈ C : S(z) = s},
γ(s) = {z ∈ C : S(z) = s and En

λ (z)
n→∞−−−→ ∞}.

Theorem
The set I (s) is nonempty if and only if s is exponentially bounded.
Moreover for every exponentially bounded itinerary s the set γ(s)
contains injective curve ωs : [ζ,∞) −→ C such that
Re(ωs(t))

t→+∞−−−−→ +∞. We call that curve tail of hair (ray).

This theorem was investigated by, among others,
R. Devaney, M. Krych (1984)
C. Bodelón, R. Devaney, M. Hayes, G. Roberts, L. Goldberg,
J. Hubbard (1999)
D. Schleicher, J. Zimmer (2003)
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Existence of indecomposable continua

The existence of indecomposable continua has been shown in the
many cases.

Two of them are as follows.
If λ > 1

e and s is bounded itinerary with infinitely many blocks
of zeros (that are finite but sufficient long) then I (s) ∪ {∞} is
indecomposable continuum in Riemann sphere.
If λ > 1

e and s = (000 . . .) then there is compactification of
I (s) that makes it pair of indecoposable continua.
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Julia set of exponential map

Theorem (M. Misiurewicz; 1981)

For every λ > 1
e the Julia set of Eλ is C.

Remark

For every λ > 1
e asymptotic value 0 goes to ∞.
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Indecomposable continua in the first case

First case was described by R. Devaney and X. Jarque (2002).

The main result is as follows.

Let tm be a block of digits of length m with nonzero first digit and
such that each digit has absolute value at most M ∈ Z+.
Let 0m be a block of length m consisting of all zeroes.

Theorem (R. Devaney, X. Jarque)

Let λ > 1
e . Given an infinite sequence of blocks tm1 , tm2 , . . . (as

above) there exist a sequence of integers nj such that the set
I (s) ∪ {∞} for the sequence

s = tm1 0n1 tm2 0n2 tm3 . . . ,

is an indecomposable continuum in the Riemann sphere.
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Indecomposable continua in the first case

In order to proof mentioned theorem we are interested in itineraries
s = (s0s1s2 . . .) such that:

there exists M ∈ Z+ such that ∀k∈N |sk | ⩽ M,
s does not end in all zeros i.e ∀K∈N ∃k⩾K sk ̸= 0.

We denote the set of such s by ΣM .
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Indecomposable continua in the first case

One of the things that the first condition gives us is that there
exists ζ such that for every s ∈ ΣM the set ωs is graph over [ζ,∞).

Second condition allow us to construct hair γ(s) by

γ(s) =
∞⋃
n=1

Lλ,s0 ◦ Lλ,s1 ◦ . . . ◦ Lλ,sn−1

(
ωσn(s)

)
,

where σ is a shift map: σ((s0s1s2 . . .)) = (s1s2s3 . . .), and Lλ,j is
branch of inverse of Eλ with values in Rj .
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Indecomposable continua in the first case

The proof is based on Curry’s theorem.

Theorem (S. Curry; 1991)

Suppose X is a one-dimensional plane continuum which is the
closure of a ray that limits on itself; and suppose that X separates
the plane into not more than finitely many components. Then X is
indecomposable.

In order to use that theorem we want to show that:
I (s) ∪ {∞} a one-dimensional continuum in the Riemann
sphere,
I (s) is the closure of γ(s),
C \ I (s) is connected set,
γ(s) is a curve that limits on itself.
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Indecomposable continua in the first case

In order to show the first three properties, we need to analyze the
topological properties of the set I (s).
The main theorem of this part is the following characterization of
the dynamics of set I (s).

Theorem (R. Devaney, X. Jarque)

Let s ∈ ΣM . Then there is a unique point zs ∈ I (s) whose orbit is
bounded. All other points have ω-limit sets that are either the
point at ∞ or the orbit of 0 together with ∞.

Let’s focus on the last property.

Definition

The curve φ : [0,+∞) −→ Ĉ limits on itself if for every

t ∈ [0,+∞) there exists a sequence (tj)
∞
j=0 such that tj

j→∞−−−→ +∞

and φ(tj)
j→∞−−−→ φ(t).
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Indecomposable continua in the first case
We want to show that, for some s, γ(s) limits on itself.

Let V (a, b) be a rectangle given by

V (a, b) = {z ∈ C : Re(z) ∈ [a− 1, b + 1], | Im(z)| ⩽ (2M + 1)π}.

We can find increasing sequences an and bn such that for every n
and k

V (an+1, bn+k+1) ⊆ Eλ (V (an, bn+k))

and for every s ∈ ΣM rectangle V (an, bn+k) contains En
λ (α

k
s ),

where αk
s is the initial part of the tail ωs (the greater k the longer

that initial part αk
s and

⋃∞
k=0 α

k
s = ωs).

We have the following inclusions:

αk
s ⊆

∞⋂
n=1

Lλ,s0 ◦ Lλ,s1 ◦ . . . ◦ Lλ,sn−1 (V (an, bn+k)) ⊆ ωs .
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Indecomposable continua in the first case

Consider any itinerary t ∈ ΣM with nonzero first digit. It’s tail is
ωt .

By adding zeros at the beginning of the itinerary t, we can get a
tail ω0l t that is arbitrarily close to the real axis.

Now we apply the function Lλ,0 to the set ω0l t as many times as
necessary and, for any n and j , we obtain the curve that is part of
γ(0kt) and that passes twice through V (an, bn+j).

Figure: Part of the hair γ(0kt) that passes twice through V (an, bn+j).
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Indecomposable continua in the first case

It this case for any finite, and bounded by M, sequence
s0, s1, . . . , sn−1 two parts of the hair γ(s0s1 . . . sn−10kt) are in

Lλ,s0 ◦ Lλ,s1 ◦ . . . ◦ Lλ,sn−1 (V (an, bn+j)) ,

which makes them close to each other (the larger n, the smaller
this distance). One of those parts is the initial part αk

s .

Now for every j we divide itinerary s into three parts:

s = tm1 0n1 . . . tmj−1︸ ︷︷ ︸
s0s1...sqj−1

0nj tmj+1 0nj+1 . . .︸ ︷︷ ︸
t

,

and we set the length nj of the block 0nj so that the hair ω(0nj t)
passes twice through a long enough rectangle which is far enough
to the right (both length and distance increase with j).
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Indecomposable continua in the first case

In this way we get that γ(s) limits on tail ω(s).

Analogous reasoning for σn(s) gives us that γ(s) limits on itself.
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Work in progress

Construction of indecomposable continua for unbounded itineraries.
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Hausdorff dimension

Theorem (Ł. Pawelec, A. Zdunik; 2014)

The Hausdorff dimension of indecomposable continuum just
constructed is equal to 1.
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Indecomposable continua in the second case
The case of λ > 1

e and s = (000 . . .) was described by R. Devaney
(1999).

If S(z) = (000 . . .) and Im(z) ⩾ 0 then Im(En
λ (z)) ⩾ 0 for all

n ∈ N.

Thus we are interested in set

Λ = {z ∈ C : ∀n∈N En
λ (z) ∈ S},

where S = {z ∈ C : 0 ⩽ Im(z) ⩽ π}.

Let

Ln = {z ∈ S : ∀0⩽j⩽n E j
λ(z) ∈ S and En+1

λ (z) /∈ S}.

We have

Λ = S \
∞⋃
n=1

Ln.
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Indecomposable continua in the second case

Let Bn be a boundary of Ln. Every set Bn is a curve such that
En
λ (Bn) = {z ∈ C : Im(z) = π}.

Lemma
For every n > 0 set

⋃∞
j=n Bj is dense in Λ.

In this case we want to use Curry’s theorem too.
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Indecomposable continua in the second case

We create compactification of Λ by gluing the ends of the Bn

curves.

Figure: Idea of creating Γ which is compactification of Λ.

Previous lemma gives us that new curve limits on itself and
compactification Γ of Λ is indecomposable continuum.
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Hausdorff dimension
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Indecomposable continua in other cases

Indecomposable continua appear also in other cases.

If λ = 2πi then 0 is preperiodic: Eλ(0) = 2πi , Eλ(2πi) = 2πi .
Thus λ = 2πi is Misiurewicz paramter. For such λ we have
J(Eλ) = C.

Theorem (R. Devaney, X. Jarque, M. Rocha; 2005)

If λ = 2πi then there exist itineraries s such that the set I (s)
consists of either an indecomposable continuum in the Riemann
sphere and a distinguished curve that accumulates on it, or else the
closure of a pair of curves that accumulate on themselves as well as
on each other. In this case the set of accumulation points is an
indecomposable continuum.
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Indecomposable continua in other cases

There are some general results.

Theorem (L. Rempe; 2007)

Suppose that Eκ (Eκ(z) = ez + κ) is an exponential map whose
singular value κ is on a dynamic ray or is the landing point of such
a ray. Then there exist uncountably many dynamic rays g whose
accumulation set (on the Riemann sphere) is an indecomposable
continuum containing g .

Indecomposable continua exist for functions other than Eλ. For
f (z) = z + e−z we have the following result.

Theorem (N. Fagella, A. Jové; 2023)

There exist uncountably many dynamic rays which do not land.
The landing set of the non-landing rays is an indecomposable
continuum.
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a ray. Then there exist uncountably many dynamic rays g whose
accumulation set (on the Riemann sphere) is an indecomposable
continuum containing g .

Indecomposable continua exist for functions other than Eλ. For
f (z) = z + e−z we have the following result.

Theorem (N. Fagella, A. Jové; 2023)

There exist uncountably many dynamic rays which do not land.
The landing set of the non-landing rays is an indecomposable
continuum.
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Thank you!
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