A flower theorem in dimension two

Lorena López Hernanz, Universidad de Alcalá Joint work with Rudy Rosas

Objective

We study the local dynamics of biholomorphisms in \mathbb{C}^{2} tangent to the identity, i.e. $F(z)=z+\ldots$

In dimension one, the dynamics is well understood:
Theorem (Leau-Fatou flower theorem)
If $F(z)=z+a z^{k+1}+\ldots, a \neq 0$, there are $2 k$ sectorial domains (called petals), covering a punctured neighborhood of the origin, where the orbits are alternatively attracted or repelled by the origin. Moreover, for each petal Ω there exists a holomorphic injective $\operatorname{map} \varphi: \Omega \rightarrow \mathbb{C}$ such that $\varphi \circ F \circ \varphi^{-1}(z)=z+1$.

Dynamics in dimension one

Dynamics in dimension one

Dynamics of $z \mapsto z-z^{4}+z^{5}(\ldots)$

Existence of petals in dimension two

We consider a tangent to the identity biholomorphism F in $\left(\mathbb{C}^{2}, 0\right)$.
\star A parabolic curve of F is a connected domain $\Omega \subset \mathbb{C}^{2}$ of dimension 1 such that $0 \in \partial \Omega, F(\Omega) \subset \Omega, F^{n}(p) \rightarrow 0$. Existence of parabolic curves: Écalle, Hakim, Abate, L.H.-Rosas.
Most general result (Abate): F always has either a curve of fixed points or a parabolic curve.

* A parabolic domain of F is a connected domain $\Omega \subset \mathbb{C}^{2}$ of dimension 2 such that $0 \in \partial \Omega, F(\Omega) \subset \Omega, F^{n}(p) \rightarrow 0$. Existence of parabolic domains: Hakim, Vivas.

All the previous results are based on the resolution of F (Abate, Seidenberg)

Resolution of F

F is the time- 1 flow of a formal vector field \hat{X}. After a sequence of blow-ups, the transform of X at each point can be written

$$
\hat{X}^{*}=x^{m} y^{n} Y
$$

where $m \geq 1, n \geq 0$ and Y either is non-singular or has a non-nilpotent linear part.

The transform of F under that sequence of blow-ups is the time-1 flow of \hat{X}^{*}.

Resolution of F

The transform of X at each point can be written

$$
\hat{X}^{*}=x^{m} y^{n} Y
$$

where $m \geq 1, n \geq 0$ and Y either is non-singular or has a non-nilpotent linear part. When Y is non-singular, there are no orbits converging to the fixed point. When Y is singular, if both eigenvalues are non-zero we say that 0 is a non-degenerate singularity; otherwise, it is a saddle-node.

We work at non-degenerate singularities. At these points, F can be written

$$
F(x, y)=\left(x+x^{m+1}[a+\ldots], y+x^{m}[b y+\ldots]\right)
$$

if $n=0$, or

$$
F(x, y)=\left(x+x^{m+1} y^{n}[a+\ldots], y+x^{m} y^{n+1}[b+\ldots]\right)
$$

if $n \geq 1$, with $m \geq 1$ and $a b \neq 0$ in both cases.

A toy model

We use the flow of the vector field

$$
x^{m} y^{n}\left(a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}\right)
$$

as a toy model for the dynamics. The orbits are

$$
\begin{aligned}
& x(t)=x\left[1-(a m+b n) x^{m} y^{n} t\right]^{-a /(a m+b n)} \\
& y(t)=y\left[1-(a m+b n) x^{m} y^{n} t\right]^{-b /(a m+b n)}
\end{aligned}
$$

where $(x, y)=(x(0), y(0))$, so they converge to 0 if and only if

$$
\operatorname{Re}\left(\frac{a}{a m+b n}\right)>0 \quad \text { and } \quad \operatorname{Re}\left(\frac{b}{a m+b n}\right)>0
$$

The flower theorem

Let 0 be a non-degenerate singularity of F. If $n=0$, assume that F satisfies

$$
\operatorname{Re}(b / a)>0
$$

and set $d=m$; if $n \geq 1$, assume that F satisfies

$$
\operatorname{Re}\left(\frac{a m+b n}{a}\right)>0 \quad \text { and } \quad \operatorname{Re}\left(\frac{a m+b n}{b}\right)>0
$$

and set $d=(m, n)$. Then, in any neighborhood of the origin there exist d pairwise disjoint connected open sets $\Omega_{0}^{+}, \Omega_{1}^{+}, \ldots, \Omega_{d-1}^{+}$, and d pairwise disjoint connected open sets $\Omega_{0}^{-}, \Omega_{1}^{-}, \ldots, \Omega_{d-1}^{-}$, such that the following assertions hold:

- The sets Ω_{k}^{+}are invariant for F and $F^{j} \rightarrow 0$ as $j \rightarrow+\infty$ on Ω_{k}^{+}, and the sets Ω_{k}^{-}are invariant for F^{-1} and $F^{-j} \rightarrow 0$ as $j \rightarrow+\infty$ on Ω_{k}^{-}.
- $\Omega_{0}^{+}, \ldots, \Omega_{d-1}^{+}, \Omega_{0}^{-}, \ldots, \Omega_{d-1}^{-}$, together with the fixed set $\left\{x y^{n}=0\right\}$, cover a neighborhood of the origin.
- For each k, there exist injective holomorphic maps $\varphi_{k}^{+}: \Omega_{k}^{+} \rightarrow \mathbb{C}^{2}$ and $\varphi_{k}^{-}: \Omega_{k}^{-} \rightarrow \mathbb{C}^{2}$ conjugating F with $(z, w) \mapsto(z+1, w)$.

The flower theorem

\star In the case $n=0$, the existence of parabolic domains and Fatou coordinates was proved by Hakim. In the case $n \geq 1$, the existence of parabolic domains was shown by Vivas.

* What if the hypothesis is not satisfied?

Theorem
Let 0 be a non-degenerate singularity of $F \in \operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)$. If $n=0$, assume that

$$
\operatorname{Re}(b / a)<0 ;
$$

if $n \geq 1$, assume that either

$$
\operatorname{Re}\left(\frac{a m+b n}{a}\right)<0 \quad \text { or } \quad \operatorname{Re}\left(\frac{a m+b n}{b}\right)<0 .
$$

Then there exists a neighborhood \mathcal{U} of the origin such that for every $p \in \mathcal{U}$ outside the fixed set (and outside the parabolic curves if $n=0$) there exist $j, I \in \mathbb{N}$ such that $F^{j}(p) \notin \mathcal{U}$ and $F^{-I}(p) \notin \mathcal{U}$.

The flower theorem

* The hypotheses in the previous theorems are necessary:

Example

Let F be the time- 1 flow of the vector field

$$
X=x^{m} y^{n}\left[a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}\right] .
$$

If

$$
\operatorname{Re}\left(\frac{a m+b n}{a}\right)=0 \quad \text { and } \quad \operatorname{Re}\left(\frac{a m+b n}{b}\right) \geq 0
$$

then for any neighborhood \mathcal{U} of the origin there exists $p \in \mathcal{U}$ outside the fixed set such that the orbit $\left\{F^{j}(p): j \in \mathbb{Z}\right\}$ is contained in \mathcal{U} and bounded away from the origin.

Idea of the proof

We assume for simplicity that $m=1$ in case $n=0$ and that $(m, n)=1$ if $n \geq 1$. With a linear change of coordinates we replace a and b by $-a /(a m+b n)$ and $-b /(a m+b n)$, so we can directly assume

$$
\operatorname{Re} a<0, \operatorname{Re} b<0 \text { and } a m+b n=-1
$$

In case $n=0$, Écalle and Hakim showed the existence of parabolic curves for F : there exist a holomorphic injective map u such that $F_{2}(x, u(x))=u\left(F_{1}(x, u(x))\right)$. With the sectorial change of coordinates $y \mapsto y-u(x)$ we get

$$
F(x, y)=\left(x+x^{2}[-1+O(x, y)], y+x y[b+O(x, y)]\right)
$$

so we assume that

$$
F(x, y)=\left(x+x^{m+1} y^{n}[a+O(x, y)], y+x^{m} y^{n+1}[b+O(x, y)]\right)
$$

with $m \geq 1, n \geq 0, \operatorname{Re} a<0, \operatorname{Re} b<0$ and $a m+b n=-1$.

Idea of the proof

If $\left(x_{1}, y_{1}\right)=F(x, y)$ and $n=0$, then

$$
x_{1}=x-x^{2}+x^{2} O(x, y)
$$

so for y small x_{1} behaves as a tangent to the identity map in dimension 1 , and we find an attracting petal bisected by \mathbb{R}^{+}. The domain

$$
\mathcal{D}=\left\{(x, y) \in \mathbb{C}^{2}: x \in V_{\varepsilon, \theta},|y|<\delta\right\}
$$

for some small sector $V_{\varepsilon, \theta}$ bisected by \mathbb{R}^{+}and some $\delta>0$, is invariant and attracting.

If $n \geq 1$, then

$$
x_{1}^{m} y_{1}^{n}=x^{m} y^{n}+\left(x^{m} y^{n}\right)^{2}(-1+O(x, y))
$$

so for (x, y) small we find an attracting petal for $x^{m} y^{n} \mapsto x_{1}^{m} y_{1}^{n}$ bisected by \mathbb{R}^{+}. The domain

$$
\mathcal{D}=\left\{(x, y) \in \mathbb{C}^{2}: x^{m} y^{n} \in V_{\varepsilon, \theta},|x|<\delta,|y|<\delta\right\}
$$

for some small sector $V_{\varepsilon, \theta}$ bisected by \mathbb{R}^{+}and some $\delta>0$, is invariant and attracting.

Idea of the proof

To get Fatou coordinates, we look for a $\operatorname{map} \varphi=\left(\varphi_{1}, \varphi_{2}\right)$ such that

$$
\varphi_{1} \circ F=\varphi_{1}+1 ; \quad \varphi_{2} \circ F=\varphi_{2}
$$

To find φ_{2}, we use the dynamics of the toy model $\exp X$, where

$$
X=x^{m} y^{n}\left(a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}\right)
$$

This vector field has first integrals $x^{k b} y^{-k a}, k \in \mathbb{C}^{*}$.
We consider the function

$$
g(x, y)=y x^{b}
$$

in case $n=0$ and

$$
g(x, y)=\text { a branch of } x^{b} y^{-a} \text { defined in } \mathcal{D}
$$

in case $n \geq 1$.

Idea of the proof

The function φ_{2} given by

$$
\varphi_{2}(x, y)=\lim _{j \rightarrow \infty} g\left(x_{j}, y_{j}\right)
$$

where $\left(x_{j}, y_{j}\right)=F^{j}(x, y)$, is well defined and holomorphic in a domain $\mathcal{U} \subset \mathcal{D}$ (which is also invariant and attracting and contains eventually all the convergent orbits of F). And clearly $\varphi_{2} \circ F=\varphi_{2}$.
Now we consider the map $\phi: \mathcal{U} \rightarrow \mathbb{C}^{2}$ defined by

$$
\phi(x, y)=\left(\frac{1}{x^{m} y^{n}}, \varphi_{2}(x, y)\right)
$$

which is injective and satisfies

$$
\phi \circ F \circ \phi^{-1}(z, w)=(z+1+h(z, w), w)
$$

with $h(z, w)=O\left(z^{-\delta}\right), \delta>0$. To find φ_{1}, we use the same techniques as in the 1 -dimensional case.

Idea of the proof

To enlarge the parabolic domains, we consider the domain

$$
\widetilde{\mathcal{D}}=\left\{(x, y) \in \mathbb{C}^{2}: x^{m} y^{n} \in \widetilde{V}_{\varepsilon, \theta},|n x|<\rho,|y|<\rho\right\}
$$

where $\widetilde{V}_{\varepsilon, \theta}$ is

For ρ small, the orbit of any point $(x, y) \in \widetilde{\mathcal{D}}$ eventually lies in \mathcal{U}. So if we define

$$
\Omega^{+}=\bigcup_{j \geq 0} F^{j}(\widetilde{\mathcal{D}})
$$

which is clearly invariant, we can extend the Fatou coordinate to Ω^{+}.

