1. Introduction
$f: \mathbb{C} \rightarrow \hat{\mathbb{C}}$ meromorphic function
$\mathcal{F}(f)$: Faton set; $J(f)$: Julia set

THM (Fatou, Julia) Periodic points are dense in $f(f)$

Q Given U invariant paton component, are periodic points dense in ∂U ?
\rightarrow Why this is not obvious?

2. INVARIANT Fatou components

3. - Periodic boundary points for rational maps (Priytycki-zdumik)

- U siegel disk / Hermann ring \rightarrow den't expect periodic points in ∂U (if ∂u locally connected, $f_{l} \partial u \sim \underset{\substack{\text { irrational } \\ \text { rotation }}}{\Rightarrow} \underset{\text { po periods }}{\text { pice }}$)
- U attr/ parab basin \rightarrow we expect periodic points in ∂u

U simply connected, aU locally connected
$\Rightarrow f_{1 \partial u} \sim(\theta \mapsto d \theta \bmod 1) \Rightarrow$ periodic points dense in ∂U

THM (Przytycki - zdunik) f rational U att I part basin
\Rightarrow periodic points dense in on
\rightarrow two different proofs $\quad\left\{\begin{array}{l}\text { simply connected att basion } \\ \text { general case (geometric coding trees) }\end{array}\right.$
4. Generalization to transcendental maps (simply connected FC)

Q 1. Which FC? attrl parab basins + Baker domains?
2. How to adapt the proof of PZ to the transandental setting?

THM (FY) f meromorphic, $U \quad\left\{\begin{array}{l}\text { atty I paras basin } \\ \text { doubly paras BD }\end{array}\right.$
If (a) $w_{u}(P(f) \cap \partial U)=0$
(b). $\overline{S V(f) \cap u} \subseteq u$
\Rightarrow periodic points dense in ∂U

Obs: (a), (b) always hold for rational maps

$$
\left\{\begin{array}{l}
(a) \text { pesin's theory } \\
(b) \text { \# } V V(f)<\infty
\end{array}\right.
$$

Qt U Baker domain, do we expect periodic points in ∂u ? Depend Classification of $B D$

\rightarrow No normal form around ∞ !!
(essential sing)
there exists a "petal" \rightarrow three possible dynamics
doubly parabolic

(~ parabolic petal)
\downarrow
hyper bolic

(as is it was attracting)

Simply parabolic

chat of a paral petal)
like a parabolic basin
(if $\overline{s V(f \ln U} \subset U$, same ergodic properties)

Q2 Proof of PZ (rational, simply connected) \rightarrow generalization to transcendental

1. For w_{u} - al $x \in \partial u$, $\exists r:=r(x)>0$ st. all inverse branches well -def in $D(x, r)+$ contracting
(wot some metric)
rational maps \rightarrow Resin's theory + Euclidean metic
trans. maps $\rightarrow \omega_{u}(P(f) \cap \partial U)=0+$ hyperbolic metric for C- PDf)
al $x \in \partial u$ is recurrent
(general fact for the FC we consider)

2. How to ensure $p \in \partial u$?

\rightarrow If we can do this, $\bigcup_{m \geqslant 0} F_{n}^{m}(\gamma) \leq U$ lands at the periodic point $p \Rightarrow p \in \partial U$

* Not obriens $D \cap U$ may not be connected

Ex. ∂u cantor bouquet

TOOLS:

... How to extend to multiply connected? understanding π

