boundary points for transcendental maps Periodic ^k Cjoint work with N. Fagella) 1. Introduction f: (-) a meromorphic function F(f): Fatou set; J(f): Julia set THM (Fatou, Julia) Periodic points are durse in J(f) Q Given U invariant Fatou component, are periodic points dense in 24? -> Why this is not obvious? U Siegel disk (fill irrational rotation) } = no periodic points in 24

2. INVARIANT Fatou components

polynomials	transanduntal entire				
· sumply connected	+ Baker domains				
· Siegel disks attr/parab basins	(ie. f 1u = ∞, es. ring)				
rationgl	transcendental meremorphic				
· 1, 2, or as - connected					
÷					
Hermann rings	1				

3. - <u>Periodic boundary points for rational maps</u> (Przyżycki-zdunik) · U Siegel disk / Hermann ring → don't expect periodic points in ∂U (ij ∂U locally connected, fl∂u ~ irrational → no periodic points) · U attr/parab basin → we expect periodic points in ∂U U simply connected, ∂U locally connected ⇒ flou ~ (0 → d0 mod 1) ⇒ periodic points dense in ∂U

4. <u>Generalization to transandental maps</u> (simply connected FC) (Fagella - ₹)
<u>attribute</u>
<u>attribute</u>
1. Which FC? attriperate basins + Baker domains?
2. How to adapt the proof of PZ to the transandental setting?

THM (FJ) f meromorphic, U j attr/parate basin simply connected J doubly parate BD IJ (a); W_U (P(f) → ∂U) = 0 (b): SV(f) → U ⊆ U → periodic points dense in ∂U

Obs: (a), (b) always hold for rational maps) (a) perin's theory

Q1 U Baker domain, do use expect periodic points in ∂U ? Depend Classification of BD $\rightarrow NO$ normal porm around $\sim !!$ (escential sing)

there exists a "petal" - three possible dynamics

the periodic point $p \Rightarrow p \in \partial U$

*) <u>Not</u>	obne	ms	DAU may	nat be	connected		
	Ex.	əu	Cantor boug	net			
		Ĩ					
TOOLS	:	U	→ (l		_, extensio	n to the boundary
		۲ ۷	۲ ۱	l - Rie	mann mop	<u> ว</u> น -	_ >∂U
		ID	<u> </u>	D		φ * ↑	14*
			r associated inner function	9 n		91D _	9* ƏID
			•			in the	sense of radial
						limits	almost every where
						+	
						Koche	distortion
						+	NA
						measure -	Theoretical
						pro	
How	to e	extend	to muttiply	ugmer t	el? u	nderstanding	π