The high type quadratic Siegel disks are Jordan domains

YANG Fei

Nanjing University

joint with Mitsuhiro Shishikura

TOPICS IN COMPLEX DYNAMICS 2019
FROM COMBINATORICS TO TRANSCENDENTAL DYNAMICS

Barcelona University, Barcelona March 25, 2019

Siegel disk and continued fractions

Let $0 < \alpha < 1$ be irrational, f non-linear holo., f(0) = 0 and $f'(0) = e^{2\pi i\alpha}$.

The *maximal* region in which f is conjugate to $R_{\alpha}(z) = e^{2\pi i \alpha}z$ is a simply connected domain Δ_f called the **Siegel disk** of f centered at 0.

Siegel disk and continued fractions

Let $0 < \alpha < 1$ be irrational, f non-linear holo., f(0) = 0 and $f'(0) = e^{2\pi i\alpha}$.

The *maximal* region in which f is conjugate to $R_{\alpha}(z) = e^{2\pi i \alpha}z$ is a simply connected domain Δ_f called the **Siegel disk** of f centered at 0.

Let

$$\alpha = [0; a_1, a_2, \cdots, a_n, \cdots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots}}}$$

be the **continued fraction expansion** of α . Then

$$\frac{p_n}{q_n} = [0; a_1, a_2, \cdots, a_n] = \frac{1}{a_1 + \frac{1}{\ddots + \frac{1}{a_n}}}$$

converges to α exponentially fast.

Diophantine condition of order $\leq \kappa$:

$$\mathscr{D}(\kappa) := \left\{ \alpha \in (0,1) : \ \exists \, \varepsilon > 0 \text{ s.t. } \left| \alpha - \frac{p}{q} \right| > \frac{\varepsilon}{q^{\kappa}} \text{ for every rational } \frac{p}{q} \right\}.$$

Theorem (Siegel, 1942)

The holomorphic germ f has a Siegel disk at 0 if $\alpha \in \mathcal{D}(\kappa)$ for some $\kappa > 2$.

- $\cap_{\kappa>2} \mathscr{D}(\kappa)$ has full measure.
- $\mathcal{D}(2)$ has measure 0 and $\alpha \in \mathcal{D}(2)$ is of **bounded type**, i.e. $\sup_n \{a_n\} < \infty$.
- $\alpha \in \mathcal{D} = \bigcup_{\kappa \geq 2} \mathcal{D}(\kappa) \Leftrightarrow \sup_{n} \{ \frac{\log q_{n+1}}{\log q_n} \} < \infty.$

Diophantine condition of order $\leq \kappa$:

$$\mathscr{D}(\kappa) := \left\{\alpha \in (0,1): \ \exists \, \varepsilon > 0 \text{ s.t. } \left|\alpha - \frac{p}{q}\right| > \frac{\varepsilon}{q^{\kappa}} \text{ for every rational } \frac{p}{q}\right\}.$$

Theorem (Siegel, 1942)

The holomorphic germ f has a Siegel disk at 0 if $\alpha \in \mathcal{D}(\kappa)$ for some $\kappa \geq 2$.

- $\cap_{\kappa>2} \mathscr{D}(\kappa)$ has full measure.
- $\mathcal{D}(2)$ has measure 0 and $\alpha \in \mathcal{D}(2)$ is of **bounded type**, i.e. $\sup_n \{a_n\} < \infty$.
- $\alpha \in \mathscr{D} = \bigcup_{\kappa \geq 2} \mathscr{D}(\kappa) \Leftrightarrow \sup_{\kappa} \{ \frac{\log q_{n+1}}{\log q_n} \} < \infty.$

Theorem (Brjuno, 1965)

The holomorphic germ f has a Siegel disk at 0 if α belongs to

$$\mathscr{B} = \left\{ \alpha \in (0,1) \setminus \mathbb{Q} : \sum_{n} \frac{\log q_{n+1}}{q_n} < \infty \right\}$$

Remark: $\mathcal{D} \subsetneq \mathcal{B}$.

Conjecture (Douady, 1986)

If a non-linear holomorphic function (entire or rational) has a Siegel disk, then the rotation number is necessarily in \mathcal{B} .

Theorem (Brjuno, 1965)

The holomorphic germ f has a Siegel disk at 0 if α belongs to

$$\mathscr{B} = \left\{ \alpha \in (0,1) \setminus \mathbb{Q} : \sum_{n} \frac{\log q_{n+1}}{q_n} < \infty \right\}$$

Remark: $\mathcal{D} \subsetneq \mathcal{B}$.

Conjecture (Douady, 1986)

If a non-linear holomorphic function (entire or rational) has a Siegel disk, then the rotation number is necessarily in \mathcal{B} .

Theorem (Yoccoz, 1988)

If $\alpha \notin \mathcal{B}$, then $P_{\alpha}(z) = e^{2\pi i \alpha}z + z^2$ has no Siegel disk at the origin.

Remark: Douady's conjecture is still open even for cubic polynomials.

Some progresses have been made by Pérez-Marco, Geyer, Okuyama, Manlove, Cheraghi ...

Theorem (Brjuno, 1965)

The holomorphic germ f has a Siegel disk at 0 if α belongs to

$$\mathcal{B} = \left\{ \alpha \in (0,1) \setminus \mathbb{Q} : \sum_{n} \frac{\log q_{n+1}}{q_n} < \infty \right\}$$

Remark: $\mathcal{D} \subsetneq \mathcal{B}$.

Siegel disks

The Siegel disk of $f(z)=e^{2\pi\mathrm{i}\alpha}z+z^2$, where $\alpha=\frac{\sqrt{5}-1}{2}=[0;1,1,1,\cdots]$

The Siegel disk of $f(z)=rac{e^{\pi\mathrm{i}(\sqrt{5}-1)}z}{(1-z)^2}$

Siegel disks

The Siegel disk of $f(z) = e^{\pi i(\sqrt{5}-1)}ze^z$

The Siegel disk of $f(z) = e^{\pi i(\sqrt{5}-1)/2} \sin(z)$

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map (deg ≥ 2) is always a Jordan domain.

5 / 15

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map (deg ≥ 2) is always a Jordan domain.

When $\alpha \in \mathcal{D}(2)$ is of **bounded type**:

Theorem (Zhang, 2011)

The bounded type Siegel disk of a rational map ($deg \ge 2$) is a quasi-disk.

- (Douady-Ghys-Herman-Świątek, 1987) quadratic poly
- (Zakeri, 1999) cubic poly
- (Shishikura, 2001) all poly
- (Yampolsky-Zakeri, 2001) some quadratic rational map

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map (deg ≥ 2) is always a Jordan domain.

When $\alpha \in \mathcal{D}(2)$ is of **bounded type**:

Theorem (Zhang, 2011)

The bounded type Siegel disk of a rational map ($deg \ge 2$) is a quasi-disk.

- (Douady-Ghys-Herman-Świątek, 1987) quadratic poly
- (Zakeri, 1999) cubic poly
- (Shishikura, 2001) all poly
- (Yampolsky-Zakeri, 2001) some quadratic rational map

Theorem (Zakeri, 2010)

The bounded type Siegel disk of a non-linear $f(z)=P(z)e^{Q(z)}$ is a quasi-disk, where P,Q are polys., $f(0)=0,f'(0)=\lambda=e^{2\pi i\alpha}$.

- (Geyer, 2001) $f(z) = \lambda z e^z$
- (Keen-Zhang, 2009) $f(z) = (\lambda z + az^2)e^z$

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map (deg ≥ 2) is always a Jordan domain.

When $\alpha \in \mathcal{D}(2)$ is of **bounded type**:

Theorem (Zhang, 2011)

The bounded type Siegel disk of a rational map $(\text{deg} \geq 2)$ is a quasi-disk.

- (Douady-Ghys-Herman-Świątek, 1987) quadratic poly
- (Zakeri, 1999) cubic poly
- (Shishikura, 2001) all poly
- (Yampolsky-Zakeri, 2001) some quadratic rational map

- (Zhang, 2005) $f(z) = \lambda \sin(z)$
- $(Y., 2013) f(z) = \lambda \sin(z) + a \sin^3(z)$
- (Chéritat, 2006) some "simple" entire functions
- (Chéritat-Epstein, 2018) some holo. maps with at most 3 singular values.

5 / 15

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map (deg ≥ 2) is always a Jordan domain.

When $\alpha \in \mathscr{P}\mathscr{Z}$ is of **Petersen-Zakeri type**:

where
$$\mathcal{D}(2) \subsetneq \mathcal{PZ} \subset \cap_{\kappa > 2} \mathcal{D}(\kappa)$$
, and

 $\log a_n = O(\sqrt{n})$ as $n \to \infty$,

 $\mathscr{P}\mathscr{Z}$ has full measure in (0,1):

Theorem (Petersen-Zakeri, 2004)

For all $\alpha \in \mathscr{PL}$, the Siegel disk of $P_{\alpha}(z) = e^{2\pi i \alpha}z + z^2$ is a Jordan domain.

- (Zhang, 2014) all polynomials
- (Zhang, 2016) $f(z) = e^{2\pi i \alpha} \sin(z)$

Conjecture (Douady-Sullivan, 1986)

The Siegel disk of a rational map (deg ≥ 2) is always a Jordan domain.

When $\alpha \in \mathscr{P}\mathscr{Z}$ is of **Petersen-Zakeri type**:

$$\log a_n = O(\sqrt{n}) \text{ as } n \to \infty,$$

where $\mathcal{D}(2) \subsetneq \mathcal{PZ} \subset \cap_{\kappa > 2} \mathcal{D}(\kappa)$, and \mathcal{PZ} has full measure in (0,1):

Theorem (Petersen-Zakeri, 2004)

For all $\alpha \in \mathscr{PL}$, the Siegel disk of $P_{\alpha}(z) = e^{2\pi i \alpha}z + z^2$ is a Jordan domain.

- (Zhang, 2014) all polynomials
- (Zhang, 2016) $f(z) = e^{2\pi i \alpha} \sin(z)$

Theorem (Avila-Buff-Chéritat, 2004)

 $\exists \alpha$ s.t. the boundary of the Siegel disk of P_{α} is smooth.

Theorem (Buff-Chéritat, 2007)

 $\exists \alpha$ s.t. the boundary of the Siegel disk of P_{α} is C^r but not C^{r+1} .

Some related work has been done by Pérez-Marco, Rogers, Shen, ...

Counter-examples

Siegel disk of $f(z) = \lambda e^{z-\lambda}$, where $\lambda = e^{\pi i(\sqrt{5}-1)}$:

Theorem (Chéritat, 2011)

There is a holomorphic germ f such that the corresponding Siegel disk Δ_f is compactly contained in Dom(f) but $\partial \Delta_f$ is a **pseudo-circle**, which is not locally connected.

Barcelona, March 25, 2019

Herman's conjecture

Conjecture (Herman, 1986?)

The boundary of the Siegel disk (non-linear, entire or rational) contains at least one singular value if and only if the rotation number $\alpha \in \mathcal{H}$.

Herman's condition:

$$\mathscr{H}:=\left\{\alpha\in(0,1)\setminus\mathbb{Q}\,\middle|\, \text{ every orientation-preserving analytic circle diffeo.}\right.\\ \text{of rotation number α is anal. conj. to $z\mapsto e^{2\pi\mathrm{i}\alpha}z$}\right\}.$$

- (Herman-Yoccoz, 1984): $\mathcal{D} \subseteq \mathcal{H} \subseteq \mathcal{B}$;
- (Yoccoz, 2002): Arithmetic characterization of \mathcal{H} :

$$\mathscr{H} = \{\alpha \in \mathscr{B} : \forall m \geq 0, \exists n > m \text{ s.t. } r_{\alpha_{n-1}} \circ \cdots \circ r_{\alpha_m}(0) \geq \mathscr{B}(\alpha_n)\},\$$

where $\alpha_k = [0; a_{k+1}, a_{k+2}, \cdots], \mathcal{B}(\alpha_n)$ is the Brjuno sum of α_n and

$$r_{\alpha}(x) = \begin{cases} \frac{1}{\alpha} \left(x - \log \frac{1}{\alpha} + 1 \right) & \text{if} \quad x \ge \log \frac{1}{\alpha}, \\ e^{x} & \text{if} \quad x < \log \frac{1}{\alpha}. \end{cases}$$

Herman's conjecture

Conjecture (Herman, 1986?)

The boundary of the Siegel disk (non-linear, entire or rational) contains at least one singular value if and only if the rotation number $\alpha \in \mathcal{H}$.

Herman's conjecture (the 'if' part) holds in the following cases:

- (Ghys, 1984): $\Delta_f \in Dom(f)$ and $\partial \Delta_f$ is a Jordan curve.
- (Herman, 1985): $f(z) = z^d + c$ and $f(z) = e^{az}$, where $d \ge 2$ and $a \in \mathbb{C} \setminus \{0\}$.
- (Rogers, 1998): f polynomial, then $\partial \Delta_f$ contains a critical point or $\partial \Delta_f$ is indecomposable continuum.
- (Graczyk-Świątek, 2003): $\Delta_f \in Dom(f)$ and α is of bounded type.
- (Chéritat-Roesch, 2016): The poly. with **two** critical values.
- (Benini-Fagella, 2018): A special class of transcendental entire functions with **two** singular values.

Some related work has also been done by Rippon, Rempe, Buff-Fagella, ...

Buff-Chéritat-Rempe (2009) proved the 'only if' part for a family of toy models.

Main result

Theorem (Shishikura-Y., 2018)

Let α be an irrational number of sufficiently **high type**, and assume that $P_{\alpha}(z) = e^{2\pi i \alpha}z + z^2$ has a Siegel disk Δ_{α} . Then $\partial \Delta_{\alpha}$ is a Jordan curve, and $-e^{2\pi i \alpha}/2 \in \partial \Delta_{\alpha}$ if and only if $\alpha \in \mathcal{H}$.

High type: if α belongs to

$$\operatorname{HT}_N := \{ \alpha = [0; a_1, a_2, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_n \ge N \text{ for all } n \ge 1 \}$$

for some large N.

 HT_N has non-empty intersection with the usual types of irrational numbers: bounded type, Petersen-Zakeri type, Herman type, Brjuno type ...

8 / 15

Theorem (Shishikura-Y., 2018)

Let α be an irrational number of sufficiently **high type**, and assume that $P_{\alpha}(z) = e^{2\pi i \alpha}z + z^2$ has a Siegel disk Δ_{α} . Then $\partial \Delta_{\alpha}$ is a Jordan curve, and $-e^{2\pi i \alpha}/2 \in \partial \Delta_{\alpha}$ if and only if $\alpha \in \mathcal{H}$.

High type: if α belongs to

$$\operatorname{HT}_N := \{ \alpha = [0; a_1, a_2, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_n \ge N \text{ for all } n \ge 1 \}$$

for some large N.

 HT_N has non-empty intersection with the usual types of irrational numbers: bounded type, Petersen-Zakeri type, Herman type, Brjuno type ...

Cheraghi (2017), independently, gave another proof of the Main result. He studied the topology of the post-critical set of all maps in the Inou-Shishikura's class IS_{α} (in particular, of P_{α}) and for all $\alpha \in HT_N$.

8 / 15

Theorem (Shishikura-Y., 2018)

Let α be an irrational number of sufficiently **high type**, and assume that $P_{\alpha}(z) = e^{2\pi i \alpha}z + z^2$ has a Siegel disk Δ_{α} . Then $\partial \Delta_{\alpha}$ is a Jordan curve, and $-e^{2\pi i \alpha}/2 \in \partial \Delta_{\alpha}$ if and only if $\alpha \in \mathcal{H}$.

High type: if α belongs to

$$\operatorname{HT}_N := \{ \alpha = [0; a_1, a_2, \cdots] \in (0, 1) \setminus \mathbb{Q} \mid a_n \ge N \text{ for all } n \ge 1 \}$$

for some large N.

 HT_N has non-empty intersection with the usual types of irrational numbers: bounded type, Petersen-Zakeri type, Herman type, Brjuno type ...

Cheraghi (2017), independently, gave another proof of the Main result. He studied the topology of the post-critical set of all maps in the Inou-Shishikura's class IS_{α} (in particular, of P_{α}) and for all $\alpha \in HT_N$.

Avila-Lyubich (2015): $\partial \Delta_f$ is a quasi-circle if $f \in IS_\alpha \cup \{P_\alpha\}$ with $\alpha \in HT_N \cap \mathcal{D}(2)$.

Inou-Shishikura's invariant class

Our proof is also valid for all the maps in Inou-Shishikura's class IS₀:

$$IS_0 \supseteq \left\{ f: Dom(f) \to \mathbb{C} \left| \begin{array}{l} 0 \in Dom(f) \text{ open } \subset \mathbb{C}, f \text{ is holo. in } Dom(f), \\ f(0) = 0, f'(0) = 1, f: Dom(f) \setminus \{0\} \to \mathbb{C}^* \text{ is a} \\ \textbf{branched covering with a unique critical value} \\ cv_f, \text{ all critical points are of local degree 2} \end{array} \right\}.$$

The following maps (their variations or renormalization) are contained in IS_{α} :

•
$$P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2$$
;

•
$$P_{n,\alpha}(z) = e^{2\pi i \alpha} z \left(1 + \frac{z}{n}\right)^n, n \ge 2;$$

•
$$E_{\alpha}(z) = e^{2\pi i \alpha} z e^{z}$$
,

•
$$S_{\alpha}(z) = e^{\pi i \alpha} \sin(z)$$
.

Inou-Shishikura's invariant class

Our proof is also valid for all the maps in Inou-Shishikura's class IS_0 :

$$IS_0 \supsetneq \left\{ f: Dom(f) \to \mathbb{C} \left| \begin{array}{l} 0 \in Dom(f) \text{ open } \subset \mathbb{C}, f \text{ is holo. in } Dom(f), \\ f(0) = 0, f'(0) = 1, f: Dom(f) \setminus \{0\} \to \mathbb{C}^* \text{ is a} \\ \textbf{branched covering with a unique critical value} \\ cv_f, \text{ all critical points are of local degree 2} \end{array} \right\}.$$

The following maps (their variations or renormalization) are contained in IS_{α} :

- $P_{\alpha}(z) = e^{2\pi i \alpha} z + z^2;$
- $P_{n,\alpha}(z) = e^{2\pi i \alpha} z \left(1 + \frac{z}{n}\right)^n, n \ge 2;$
- $E_{\alpha}(z) = e^{2\pi i \alpha} z e^{z}$,
- $S_{\alpha}(z) = e^{\pi i \alpha} \sin(z)$.

Theorem (Inou-Shishikura, 2008)

 $\exists \varepsilon_0 > 0$, s.t. if $0 < \alpha < \varepsilon_0$ then the near-parabolic renorm.

$$\mathscr{R}: IS_{\alpha} \cup \{P_{\alpha}, g_{\alpha}\} \to IS_{1/\alpha}$$

is well-defined. Moreover,

- \mathcal{R} can be iterated infinitely many times if $\alpha \in \operatorname{HT}_N$ for $N > 1/\varepsilon_0$.
- The operator \mathcal{R} is hyperbolic.

Barcelona, March 25, 2019

Idea of the proof I

For $f_0 := f \in IS_\alpha \cup \{P_\alpha, g_\alpha\}$ with $\alpha_0 := \alpha = [0; a_1, a_2, \cdots] \in HT_N$, define $f_n = \mathscr{R}^{\circ n} f_0$.

Then $f_n \in IS_{\alpha_n}$ for all $n \ge 1$, where $\alpha_n = [0; a_{n+1}, a_{n+2}, \cdots]$.

Idea of the proof I

For $f_0 := f \in IS_{\alpha} \cup \{P_{\alpha}, g_{\alpha}\}$ with $\alpha_0 := \alpha = [0; a_1, a_2, \cdots] \in HT_N$, define $f_n = \mathscr{R}^{\circ n} f_0$. Then $f_n \in IS_{\alpha_n}$ for all $n \ge 1$, where $\alpha_n = [0; a_{n+1}, a_{n+2}, \cdots]$.

For the **first** part (Douady-Sullivan's conjecture), the main steps are:

- For each $n \in \mathbb{N}$, construct a continuous curve $\gamma_n^0 : [0,1] \to \mathbb{C}$ in the Fatou coordinate plane of f_n , s.t. $\Phi_n^{-1}(\gamma_n^0)$ is a continuous closed curve in Δ_n ;
- **②** Obtain a sequence of continuous curves $\{\gamma_0^n : [0,1] \to \mathbb{C}\}_{n \in \mathbb{N}}$ in the Fatou coordinate plane of f_0 by **renormalization tower**, s.t. $\{\Phi_0^{-1}(\gamma_0^n)\}_{n \in \mathbb{N}}$ is a sequence of continuous **closed curves** in Δ_0 ;
- Prove that $\{\gamma_0^n : [0,1] \to \mathbb{C}\}_{n \in \mathbb{N}}$ converges uniformly to a continuous curve $\gamma^{\infty} : [0,1] \to \mathbb{C}$ and show that $\Phi_0^{-1}(\gamma^{\infty})$ is exactly $\partial \Delta_0$.

Idea of the proof I

For $f_0 := f \in IS_\alpha \cup \{P_\alpha, g_\alpha\}$ with $\alpha_0 := \alpha = [0; a_1, a_2, \cdots] \in HT_N$, define $f_n = \mathscr{R}^{\circ n} f_0$. Then $f_n \in IS_{\alpha_n}$ for all $n \ge 1$, where $\alpha_n = [0; a_{n+1}, a_{n+2}, \cdots]$.

For the **first** part (Douady-Sullivan's conjecture), the main steps are:

- For each $n \in \mathbb{N}$, construct a continuous curve $\gamma_n^0 : [0,1] \to \mathbb{C}$ in the Fatou coordinate plane of f_n , s.t. $\Phi_n^{-1}(\gamma_n^0)$ is a continuous closed curve in Δ_n ;
- **②** Obtain a sequence of continuous curves $\{\gamma_0^n : [0,1] \to \mathbb{C}\}_{n \in \mathbb{N}}$ in the Fatou coordinate plane of f_0 by **renormalization tower**, s.t. $\{\Phi_0^{-1}(\gamma_0^n)\}_{n \in \mathbb{N}}$ is a sequence of continuous **closed curves** in Δ_0 ;
- Prove that $\{\gamma_0^n : [0,1] \to \mathbb{C}\}_{n \in \mathbb{N}}$ converges uniformly to a continuous curve $\gamma^{\infty} : [0,1] \to \mathbb{C}$ and show that $\Phi_0^{-1}(\gamma^{\infty})$ is exactly $\partial \Delta_0$.

Key point: The convergence of the curves $\{\gamma_0^n : [0,1] \to \mathbb{C}\}_{n \in \mathbb{N}}$ is based on the **contraction** of renormalization operator (consider the inverse).

Note: The convergence may not be exponentially fast!

For each f_n , the perturbed petal \mathscr{P}_n and Fatou coordinate Φ_n satisfy $\Phi_n(\mathrm{cv}) = 1$, $\Phi_n(\mathscr{P}_n) = \{\zeta \in \mathbb{C} : 0 < \operatorname{Re} \Phi_n(z) < \lfloor \frac{1}{G_n} \rfloor - k \}$ and $\Phi_n(f_n(z)) = \Phi_n(z) + 1$.

11 / 15

Renormalization tower

The domain of definition of Φ_n^{-1} (of level $n \in \mathbb{N}$) can be extended to:

$$\mathcal{D}_n = \Phi_n(\mathcal{P}_n) \bigcup_{j=0}^{k_n+k'} (\Phi_n(S_n^0) + j)$$

Renormalization tower

The domain of definition of Φ_n^{-1} (of level $n \in \mathbb{N}$) can be extended to:

$$\mathcal{D}_n = \Phi_n(\mathcal{P}_n) \bigcup_{j=0}^{k_n+k'} (\Phi_n(S_n^0) + j)$$

 \exists anti-holo. map $\chi_n : \mathcal{D}_n \to \mathcal{D}_{n-1}$ s.t.

$$\mathcal{D}_{n-1}$$

$$\mathbb{E}_{xp} \qquad \qquad \uparrow_{x_n}$$

$$\mathbb{C} \setminus \{0\} \stackrel{\Phi_n^{-1}}{\longleftarrow} \mathcal{D}_n$$

and
$$\chi_n(1) = \mathbf{k}'' \leq C$$
.

 $\chi_n = \chi_{n,0} : \mathcal{D}_n \to \mathcal{D}_{n-1}$ is uniformly contractive w.r.t. **hyperbolic metrics**.

The sequence of curves is convergent

Proposition

There exists a constant K > 0 such that for all $n \in \mathbb{N}$, we have

$$\sum_{i=0}^n \sup_{t \in [0,1]} |\gamma_0^i(t) - \gamma_0^{i+1}(t)| \le K.$$

In particular, $(\gamma_0^n(t):[0,1]\to\mathbb{C})_{n\in\mathbb{N}}$ converges uniformly as $n\to\infty$.

Key of the proof:

Study the contraction factors between the adjacent renornormalization levels.

The sequence of curves is convergent

Proposition

There exist positive constants C_0 , C_1 and C_2 such that for all $n \ge 1$,

① (Cheraghi, 2013) If $\zeta \in \mathcal{D}_n$ with Im $\zeta \geq 1/(4\alpha_n)$, then

$$|\chi'_n(\zeta) - \alpha_n| \le C_0 \alpha_n e^{-2\pi \alpha_n \operatorname{Im} \zeta}.$$

② (Shishikura-Y., 2018) If $\zeta \in \mathcal{D}_n$ with Im $\zeta \in [-2, 1/(4\alpha_n)]$ and $\rho := \min\{|\zeta|, |\zeta - 1/\alpha_n|\} \ge C_1$, then

$$|\chi_n'(\zeta)| \leq \frac{\alpha_n}{1 - e^{-2\pi\alpha_n(\rho - C_2\log(2+\rho))}} \Big(1 + \frac{C_0}{\rho}\Big),$$

where C_1 and C_2 are chosen such that $\rho - C_2 \log(2 + \rho) \ge 2$ if $\rho \ge C_1$.

The sequence of curves is convergent

Remark: The convergence of $\{\gamma_0^n\}_{n\in\mathbb{N}}$ is exponentially fast if

- α_0 is of bounded type; or
- $\mathscr{B}(\alpha_{n+1}) \geq C/\alpha_n$ for some C > 0 (for example $a_{n+1} = e^{a_n}$).

Idea of the proof II

For the **second** part (Herman's conjecture), the main steps are:

• For each $n \in \mathbb{N}$, construct a canonical simple arc

$$\gamma_n:[0,1)\to\mathbb{C}$$

in
$$\mathcal{D}_n$$
 with $\gamma_n(0) = 1$, s.t.

$$\Gamma_n := \Phi_n^{-1}(\gamma_n)$$

is a simple arc in $Dom(f_n)$ connecting cv and 0, and

$$s_n(\gamma_{n-1})=\gamma_n,$$

where
$$s_n := \Phi_n \circ \mathbb{E} xp$$
.

Idea of the proof II

② Define a class of irrational numbers $\widehat{\mathcal{H}}_N$ in $\mathcal{B}_N = \mathcal{B} \cap \operatorname{HT}_N$:

$$\widetilde{\mathscr{H}}_{N} = \left\{ \alpha \in \mathscr{B}_{N} \,\middle|\, \begin{array}{l} \forall \, \zeta \in \gamma_{0} \setminus \{1\}, \, \exists \, n \geq 1, \, \text{s.t.} \\ \operatorname{Im} s_{n} \circ \cdots \circ s_{1}(\zeta) \geq \widetilde{\mathscr{B}}(\alpha_{n}) \end{array} \right\},$$

where

$$\widetilde{\mathscr{B}}(\alpha_n) = \frac{\mathscr{B}(\alpha_{n+1})}{2\pi} + M.$$

• Prove that $cv \in \partial \Delta_0$ if and only if $\alpha \in \widetilde{\mathscr{H}}_N$.

15 / 15

Lemma

 \exists constants $D_0, D_1 > 0$ s.t. for all $n \ge 1$,

- ② If $\zeta \in \gamma_{n-1}$ with $\operatorname{Im} \zeta < \frac{1}{2\pi} \log \frac{1}{\alpha_n} + D_0$, then $\left| \log(3 + \operatorname{Im} s_n(\zeta)) 2\pi \operatorname{Im} \zeta \right| \leq D_1$.

Recall: Arithmetic characterization of \mathcal{H} (Yoccoz, 2002):

$$\mathcal{H} = \left\{ \alpha \in \mathcal{B} \middle| \begin{array}{l} \forall m \geq 0, \exists n > m \text{ s.t.} \\ r_{n-1} \circ \cdots \circ r_m(0) \geq \mathcal{B}(\alpha_n) \end{array} \right\},$$

where

$$r_n(x) = \begin{cases} \frac{1}{\alpha_n} \left(x - \log \frac{1}{\alpha_n} + 1 \right), & \text{if } x \ge \log \frac{1}{\alpha_n}, \\ e^x, & \text{if } x < \log \frac{1}{\alpha_n}. \end{cases}$$

Idea of the proof II

② Define a class of irrational numbers $\widehat{\mathcal{H}}_N$ in $\mathcal{B}_N = \mathcal{B} \cap \operatorname{HT}_N$:

$$\widetilde{\mathscr{H}}_{N} = \left\{ \alpha \in \mathscr{B}_{N} \,\middle|\, \begin{array}{l} \forall \, \zeta \in \gamma_{0} \setminus \{1\}, \, \exists \, n \geq 1, \, \text{s.t.} \\ \operatorname{Im} s_{n} \circ \cdots \circ s_{1}(\zeta) \geq \widetilde{\mathscr{B}}(\alpha_{n}) \end{array} \right\},$$
where

$$\widetilde{\mathscr{B}}(\pmb{lpha}_n) = rac{\mathscr{B}(\pmb{lpha}_{n+1})}{2\pi} + M.$$

- **9** Prove that $cv \in \partial \Delta_0$ if and only if $\alpha \in \widetilde{\mathscr{H}}_N$.
- Prove that $\widetilde{\mathscr{H}}_N = \mathscr{H} \cap \mathrm{HT}_N$.

Lemma

 \exists constants $D_0, D_1 > 0$ s.t. for all $n \ge 1$,

- ② If $\zeta \in \gamma_{n-1}$ with $\operatorname{Im} \zeta < \frac{1}{2\pi} \log \frac{1}{\alpha_n} + D_0$, then $\left| \log(3 + \operatorname{Im} s_n(\zeta)) 2\pi \operatorname{Im} \zeta \right| \leq D_1$.

Recall: Arithmetic characterization of \mathcal{H} (Yoccoz, 2002):

$$\mathcal{H} = \left\{ \alpha \in \mathcal{B} \middle| \begin{array}{l} \forall m \geq 0, \exists n > m \text{ s.t.} \\ r_{n-1} \circ \cdots \circ r_m(0) \geq \mathcal{B}(\alpha_n) \end{array} \right\},$$

where

$$r_n(x) = \begin{cases} \frac{1}{\alpha_n} \left(x - \log \frac{1}{\alpha_n} + 1 \right), & \text{if } x \ge \log \frac{1}{\alpha_n}, \\ e^x, & \text{if } x < \log \frac{1}{\alpha_n}. \end{cases}$$

Idea of the proof II

Olympia Define a class of irrational numbers $\widehat{\mathcal{H}}_N$ in $\mathcal{B}_N = \mathcal{B} \cap \operatorname{HT}_N$:

$$\widetilde{\mathscr{H}}_{N} = \left\{ \alpha \in \mathscr{B}_{N} \,\middle|\, \begin{array}{l} \forall \, \zeta \in \gamma_{0} \setminus \{1\}, \, \exists \, n \geq 1, \, \text{s.t.} \\ \operatorname{Im} s_{n} \circ \cdots \circ s_{1}(\zeta) \geq \widetilde{\mathscr{B}}(\alpha_{n}) \end{array} \right\},$$
where

$$\widetilde{\mathscr{B}}(\alpha_n) = \frac{\mathscr{B}(\alpha_{n+1})}{2\pi} + M.$$

- Prove that $cv \in \partial \Delta_0$ if and only if $\alpha \in \widetilde{\mathscr{H}}_N$.
- Prove that $\mathscr{H}_N = \mathscr{H} \cap \mathrm{HT}_N$.

THANK YOU FOR YOUR ATTENTION!