Constructing a new quasiregular map in dimension 3.

Luke Warren

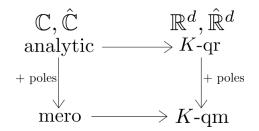
University of Nottingham

TCD Conference - 28th March 2019

Qr and qm mappings

Informally, a continuous map $f : \mathbb{R}^d \to \mathbb{R}^d$, with $d \ge 2$, is quasiregular (qr) if it maps small spheres to small ellipsoids of bounded eccentricity.

For $K \ge 1$, f is K-qr if the amount of local stretching is uniformly bounded by K.



Informally, $g: \mathbb{R}^d \to \hat{\mathbb{R}}^d$ is quasimeromorphic (qm) if it is qr away from poles.

Some properties of qr maps

- non-constant qr maps are open, discrete, sense-preserving and differentiable a.e.
- When d = 2, analytic functions = 1-qr and mero functions = 1-qm.
- injective qr = quasiconformal (qc).
- Compositions: $qr \circ qr = qr$, $qm \circ qr = qm$, and $M\ddot{o}bius \circ qr = qm$.
- (Rickman, '80) There is an analogue of Picard's theorem for qr maps.

Some properties of qr maps

- non-constant qr maps are open, discrete, sense-preserving and differentiable a.e.
- When d = 2, analytic functions = 1-qr and mero functions = 1-qm.
- injective qr = quasiconformal (qc).
- Compositions: $qr \circ qr = qr$, $qm \circ qr = qm$, and $M\ddot{o}bius \circ qr = qm$.
- (Rickman, '80) There is an analogue of Picard's theorem for qr maps.

- Cannot represent qr or qm maps as power series.
- Some topological problems in dimension 3 and higher.
- For f, g qr maps, f + g is not qr if they are 'too similar'....

but f + g is qr on a domain D if f 'dominates' g on D.

Motivation for new example

- Not many examples of trans qr and trans qm maps exist.
- Many trans entire maps on $\mathbb C$ with a value taken finitely often, such as $ze^z...$
- Currently no explicit examples of a trans qr map on ℝ^d, d ≥ 3 with a value taken finitely often!

Motivation for new example

- Not many examples of trans qr and trans qm maps exist.
- Many trans entire maps on $\mathbb C$ with a value taken finitely often, such as $ze^z...$
- Currently no explicit examples of a trans qr map on ℝ^d, d ≥ 3 with a value taken finitely often!

Theorem (W.)

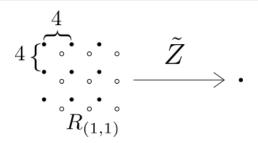
There exists a trans qr map $f : \mathbb{R}^3 \to \mathbb{R}^3$ s.t. f(x) = 0 if and only if x = 0.

Note: No known examples of a trans qm map in dimension 3 with $\mathcal{O}^{-}(\infty)$ finite either (easiest mero example on \mathbb{C} is e^{z}/z). If $M : \hat{\mathbb{R}}^{3} \to \hat{\mathbb{R}}^{3}$ is a sense-preserving Möbius map s.t. $M(0) = \infty$ and $M(\infty) = 0$, then $M \circ f$ will be qm trans with $\mathcal{O}^{-}(\infty)$ finite.

Qr maps \tilde{Z} and g

Zorich-type maps form the higher dimensional analogues of e^z . We will consider a particular version $\tilde{Z} : \mathbb{R}^3 \to \mathbb{R}^3 \setminus \{0\}$. Denote the point reached by rotating x by π about the line $(1, 1, x_3)$ by $R_{(1,1)}(x)$.

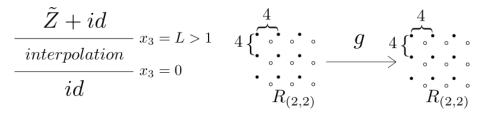
Properties of $\tilde{Z} : \mathbb{R}^3 \to \mathbb{R}^3 \setminus \{0\}$ (i) \tilde{Z} is 4-periodic in x_1 and x_2 directions, (ii) $\tilde{Z}(x) = \tilde{Z}(R_{(1,1)}(x))$ for all $x \in \mathbb{R}^3$.



Qr maps \tilde{Z} and g

Nicks and Sixsmith constructed a qr trans map $g : \mathbb{R}^3 \to \mathbb{R}^3$ whilst studying periodic domains of qr maps.

Properties of $g : \mathbb{R}^3 \to \mathbb{R}^3$ (i) g(x) = x on $\{x_3 \le 0\}$, (ii) there is some constant L > 1 s.t. $g(x) = \tilde{Z}(x) + x$ on $\{x_3 \ge L\}$, (iii) g(x + (4n, 4m, 0)) = g(x) + (4n, 4m, 0) for all $n, m \in \mathbb{Z}$, (iv) $g(R_{(2,2)}(x)) = R_{(2,2)}(g(x))$ for all $x \in \mathbb{R}^3$.



Construction

Observation:

$$ze^z = e^{e^{\log z} + \log z} = [\exp \circ (\exp + id) \circ \exp^{-1}](z).$$

Construction

Observation:

$$ze^z = e^{e^{\log z} + \log z} = [\exp \circ (\exp + id) \circ \exp^{-1}](z).$$

Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the translation T(x) = x - (1, 1, 0), and let $\tilde{V}^{-1} : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3$ be an inverse branch of \tilde{Z}^{-1} .

Define $f : \mathbb{R}^3 \to \mathbb{R}^3$ by setting f(0) = 0, and for $x \in \mathbb{R}^3 \setminus \{0\}$, set $f(x) = [\tilde{Z} \circ T \circ g \circ T^{-1} \circ \tilde{V}^{-1}](x)$.

Construction

Observation:

$$ze^z = e^{e^{\log z} + \log z} = [\exp \circ (\exp + id) \circ \exp^{-1}](z).$$

Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the translation T(x) = x - (1, 1, 0), and let $\tilde{V}^{-1} : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3$ be an inverse branch of \tilde{Z}^{-1} .

Define $f : \mathbb{R}^3 \to \mathbb{R}^3$ by setting f(0) = 0, and for $x \in \mathbb{R}^3 \setminus \{0\}$, set $f(x) = [\tilde{Z} \circ T \circ g \circ T^{-1} \circ \tilde{V}^{-1}](x)$.

Claim

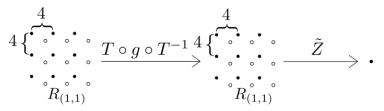
f is trans qr with f(x) = 0 if and only if x = 0.

Note: semi-conjugacy implies $f^n = \tilde{Z} \circ T \circ g^n \circ T^{-1} \circ \tilde{V}^{-1}$ for all $n \in \mathbb{N}$.

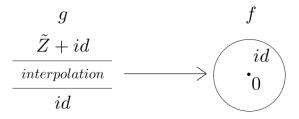
Sketch proof of claim

$$f(x) = [ilde{Z} \circ T \circ g \circ T^{-1} \circ ilde{V}^{-1}](x)$$
, and $f(0) = 0$.

Well-defined:



f(x) = 0 if and only if x = 0:



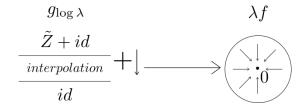
The family $\{\lambda f\}$ - dynamics for small $\lambda > 0$

We can modify g to create more qr examples.

For $\lambda > 0$, define $g_{\log \lambda}(x) = g(x) + (0, 0, \log \lambda)$. Then

$$\lambda f = \tilde{Z} \circ T \circ g_{\log \lambda} \circ T^{-1} \circ \tilde{V}^{-1}.$$

Note: If $\lambda > 0$ is small, then 0 becomes an attracting point for λf .



The family $\{\lambda f\}$ - dynamics for small $\lambda > 0$

Theorem (Nicks, Sixsmith, '18)

For $\lambda > 0$ sufficiently small, $QF(g_{\log \lambda})$ is a single connected domain containing $\{x_3 < 0\}$. Further, for every $x \in QF(g_{\log \lambda})$ there is some $k \in \mathbb{N}$ such that $g_{\log \lambda}^k(x) \in \{x_3 < 0\}$, and all points in $\{x_3 < 0\}$ iterate to infinity.

The family $\{\lambda f\}$ - dynamics for small $\lambda > 0$

Theorem (Nicks, Sixsmith, '18)

For $\lambda > 0$ sufficiently small, $QF(g_{\log \lambda})$ is a single connected domain containing $\{x_3 < 0\}$. Further, for every $x \in QF(g_{\log \lambda})$ there is some $k \in \mathbb{N}$ such that $g_{\log \lambda}^k(x) \in \{x_3 < 0\}$, and all points in $\{x_3 < 0\}$ iterate to infinity.

By using the semi-conjugacy of f, we get the following dynamics for λf when λ is sufficiently small.

Theorem (W.)

Let $\lambda > 0$ be sufficiently small. Then

(i)
$$(Z \circ T)(J(g_{\log \lambda})) = J(\lambda f)$$

(ii)
$$(Z \circ T)(QF(g_{\log \lambda})) = QF(\lambda f) \setminus \{0\},\$$

(iii)
$$QF(\lambda f) = A_{\lambda f}(0)$$
 is connected.