Automorphisms of \mathbb{C}^2 with multiply connected attracting cycles of Fatou components

Josias Reppekus (Università degli Studi di Roma "Tor Vergata")

Topics in Complex Dynamics 2019 - From combinatorics to transcendental dynamics, Barcelona, March 25-29, 2019

26. March 2019

Fatou components

Definition

Let $F : \mathbb{C}^2 \to \mathbb{C}^2$ be a holomorphic map. The *Fatou set* of F is the open set

 $\mathcal{F} := \{ z \in \mathbb{C}^d \mid \{ F^n \}_{n \in \mathbb{N}} \text{ is normal in a neighbourhood of } z \}.$

A *Fatou component* of F is a connected component U of \mathcal{F} and it is

- invariant if F(U) = U,
- attracting if $(F|_U)^n \to p \in \overline{U}$ (in particular F(p) = p),
- *non-recurrent* if no orbit starting in U accumulates in U (in the attracting case, i.e. $p \in \partial U$).

Main result

Theorem (Bracci-Raissy-Stensønes)

There exists $F \in Aut(\mathbb{C}^d)$ with an invariant, attracting, non-recurrent Fatou component biholomorphic to $\mathbb{C} \times (\mathbb{C}^*)^{d-1}$ attracted to the origin O.

Theorem (R)

Let $k, p \in \mathbb{N}^*$. There exists $F \in Aut(\mathbb{C}^d)$ with k disjoint, p-periodic cycles of attracting, non-recurrent Fatou components biholomorphic to $\mathbb{C} \times (\mathbb{C}^*)^{d-1}$ attracted to the origin O.

Other results

Theorem (R)

Let $k, p \in \mathbb{N}^*$. There exists $F \in \operatorname{Aut}(\mathbb{C}^d)$ with k disjoint, p-periodic cycles of attracting, non-recurrent Fatou components biholomorphic to $\mathbb{C} \times (\mathbb{C}^*)^{d-1}$ attracted to the origin O.

Other results

Let $U \subseteq \mathbb{C}^2$ be an invariant attracting Fatou component of $F \in Aut(\mathbb{C}^2)$.

 If U is recurrent or F is polynomial, then U ~ C² (Rosay-Rudin/Peters-Vivas-Wold, Ueda/Peters-Lyubich).

A one-resonant morphism

Take $F:\mathbb{C}^2\to\mathbb{C}^2$ of the form

$$F(z,w) = \left(\frac{\lambda z}{\lambda w}\right) \left(1 - \frac{zw}{2}\right) + O(||(z,w)^{l}||),$$

where $|\lambda| = 1$ is not a root of unity and λ is Brjuno (in particular $\lambda \overline{\lambda} = 1$). This is a so-called *one-resonant* map (Bracci-Zaitsev). *F* acts on the one-dimensional coordinate u = zw as

$$u \mapsto u(1-u+1/4u^2) + O(||(z,w)'||).$$

A Fatou component

Let $\Omega := \bigcup_{n \in \mathbb{N}} F^{-n}(B)$. Then Ω is completely *F*-invariant, open and attracted to *O*.

Claim

 Ω is a (union of) Fatou component(s).

Proof.

Ingredients:

- For $(z, w) \in \Omega$, we have $|z_n| \sim |w_n|$.
- If λ is Brjuno, then there exist local coordinates tangent to (z, w) such that (D,0) and (0, D) are *Siegel discs*, that is, analytic discs on which F acts as an irrational rotation (Pöschel).

Globalisation

Theorem (Forstnerič)

There exists an automorphism $F \in Aut(\mathbb{C}^2)$ of the form

$$F(z,w) = \left(\frac{\lambda z}{\lambda w}\right) \left(1 - \frac{zw}{2}\right) + O(||(z,w)'||).$$

Claim

For *F* as above, $\Omega \cong \mathbb{C} \times \mathbb{C}^*$.

Extending Fatou coordinates

 $ilde{U}$ extends via $ilde{U}\mapsto ilde{U}+1$ to \mathbb{C} :

 $\tilde{w}^{(n)}(p) = \tilde{w}(F^n(p))$ is defined over $H_n = H - n$. $\sim \mathbb{C}^*$ -bundle structure over \mathbb{C} :

 \tilde{w} extends via $\tilde{w} \mapsto \overline{\lambda} e^{-\frac{1}{2\tilde{U}}}$ to \mathbb{C}^* over $H = \tilde{U}(B)$:

Transition functions: $\tilde{w}^{(n+1)} = \lambda e^{\frac{1}{2(\tilde{U}+n)}} \tilde{w}^{(n)}.$

Such a bundle is trivial $\rightsquigarrow \Omega \cong \mathbb{C} \times \mathbb{C}^*$

Higher orders and periodic components

As in the one-dimensional case, we can find multiple such components, invariant or periodic, if we replace F by

$$F(z,w) = \left(\frac{\lambda z}{\zeta_p \overline{\lambda} w}\right) \left(1 - \frac{(zw)^k}{2k}\right) + O(||(z,w)'||),$$

where ζ_p is a *p*-th root of unity.

Open questions

Classification of Fatou components

Let Ω be a non-recurrent, attracting Fatou component for $F \in Aut(\mathbb{C}^d)$.

- Is Ω biholomorphic to \mathbb{C}^d , $\mathbb{C}^{d-1} \times \mathbb{C}^*$, ... or $\mathbb{C} \times (\mathbb{C}^*)^{d-1}$?
- **2** Does the Kobayashi metric vanish: $k_{\Omega} \equiv 0$?
- **③** Is there a Fatou coordinate $\psi : \Omega \to \mathbb{C}$ that is also a fibre bundle.
- For d = 2, 2 and 3 would imply 1.

Extension of Siegel discs

In our example, there are Siegel discs for F tangent to the axes.

- Can these be extended to entire Siegel curves?
- Can they be globally simultaneously linearised? I.e. can we find global Pöschel coordinates for F?

Thank you!