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Post-critically finite polynomials

Figure: The Douady rabbit is the
filled in Julia set of the
polynomial z 7→ z2 + c,
c ≈ −0.12 + 0.74i .

Let p : C→ C be post-critically
finite.

• The Julia set J(p) and the
filled-in Julia set K (p) are
connected and locally
connected.

• The filled-in Julia set K (p)
is full. Its complement
I(p) = C \ K (p) is the
escaping set.

• The filled-in Julia set is
uniquely arcwise connected
up to homotopy.
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Bounded Fatou components

Let U ⊂ K (p) \ J(p) be a
bounded Fatou component of p.

• U is a Jordan domain
• The intersection

Ω(C(p)) ∩ U = {z} is a
singleton. We call z the
center of U.

• Let ϕ : U → D be a
Riemann map, ϕ(z) = 0.
For θ ∈ R/Z, the arc
γ := ϕ−1([0, e2πiθ)) is called
an internal ray of U.

• Internal rays are dynamically
invariant

z
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Hubbard Trees for polynomials
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Figure: Filled-in Julia set of a degree
4 unicritical polynomial z 7→ z4 + c
in black and its Hubbard Tree in
orange.

The Hubbard Tree of a
post-critically finite polynomial
p : C→ C is the unique smallest
embedded tree H ⊂ C satisfying:

• C(p) ⊂ H, i.e., H contains
all critical points of p.

• p(H) ⊂ H.
• Let U be a bounded Fatou
component. The
intersection of H with U is
either empty, a singleton, or
it consists of internal rays of
U.
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Naive generalization

We want to extend the definition to the transcendental case.

Definition (Naive definition of Transcendental Hubbard Trees)
The Hubbard Tree of a post-singularly finite entire function
f : C→ C is the unique smallest embedded tree H ⊂ C satisfying:

• C(f ) ⊂ H, i.e., H contains all critical points of f .
• f (H) ⊂ H.
• Let U be a component of the Fatou set of f . The intersection

of H with U is either empty, a singleton, or it consists of
internal rays of U.

There exist transcendental entire functions without critical points,
e.g., C(λ exp) = ∅.
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Singularities of the inverse function
For f ∈ S, let V be a small disk around a ∈ S(f ). Let U be a
connected component of f −1(V ) such that f |U is not injective.

Algebraic singularity

U D

V D

f

ψ

z 7→zd

ϕ

1

We call a a critical value of
f . The unique preimage z of
a in U is a critical point of
degree d .

Logarithmic singularity

U H

V D

ψ

f exp

ϕ

1

a is an asymptotic value of
f . We define an extension
Û := U ∪· {T} and extend f
continuously via f̂ (T ) := a

We form an extension Cf ⊃ C of the complex plane by adding all
logarithmic singularities.

6 / 19



Singularities of the inverse function
For f ∈ S, let V be a small disk around a ∈ S(f ). Let U be a
connected component of f −1(V ) such that f |U is not injective.

Algebraic singularity

U D

V D

f

ψ

z 7→zd

ϕ

1

We call a a critical value of
f . The unique preimage z of
a in U is a critical point of
degree d .

Logarithmic singularity

U H

V D

ψ

f exp

ϕ

1

a is an asymptotic value of
f . We define an extension
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The definition of transcendental Hubbard Trees

Definition (Hubbard Trees for psf entire functions)
Let f be a post-singularly finite transcendental entire function.
The Hubbard Tree of f is the unique smallest embedded tree
H ⊂ Cf satisfying:

• C(f̂ ) ⊂ H, i.e., H contains all singularities of the inverse of f .
• f (H) ⊂ H.
• Let U be a Fatou component of f . The intersection of H with
U is either empty, a singleton, or consists of internal rays of U.
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Let f be a post-singularly finite transcendental entire function.
The Hubbard Tree of f is the unique smallest embedded tree
H ⊂ Cf satisfying:

• C(f̂ ) ⊂ H, i.e., H contains all singularities of the inverse of f .
• f (H) ⊂ H.
• Let U be a Fatou component of f . The intersection of H with
U is either empty, a singleton, or consists of internal rays of U.

Work in progress:
• If AV (f ) = ∅, i.e., if Cf = C, then f has a Hubbard Tree.
• Even if AV (f ) 6= ∅, the map f has a Hubbard Tree as long as

post-singular points are not separated by logarithmic
singularities.
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The definition of transcendental Hubbard Trees

Definition (Hubbard Trees for psf entire functions)
Let f be a post-singularly finite transcendental entire function.
The Hubbard Tree of f is the unique smallest embedded tree
H ⊂ Cf satisfying:

• C(f̂ ) ⊂ H, i.e., H contains all singularities of the inverse of f .
• f (H) ⊂ H.
• Let U be a Fatou component of f . The intersection of H with
U is either empty, a singleton, or consists of internal rays of U.

But: There are psf entire functions that do not have a Hubbard
Tree in the above sense, e.g., exponential maps. See

Pfrang, David; Rothgang, Michael; Schleicher, Dierk. Homotopy
Hubbard Trees for post-singularly finite exponential maps.

arXiv:1812.11831 [math.DS]
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No invariant tree
�ǆƉͺdƌĞĞ
DŝƚƚǁŽĐŚ͕�ϮϬ͘�Dćƌǌ�ϮϬϭϵ ϭϰ͗ϱϴ
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Homotopy Hubbard Trees

Definition (Homotopy Hubbard Trees)
Let f be a post-singularly finite entire function. A (reduced)
Homotopy Hubbard Tree for f is a finite embedded tree H ⊂ C
such that
• All endpoints of H are post-singular points.
• H is forward invariant up to homotopy rel P(f ).
• The induced self-map of H is expansive.
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Definition (Homotopy Hubbard Trees)
Let f be a post-singularly finite entire function. A (reduced)
Homotopy Hubbard Tree for f is a finite embedded tree H ⊂ C
such that
• All endpoints of H are post-singular points.
• H is forward invariant up to homotopy rel P(f ).
• The induced self-map of H is expansive.

Why is this concept useful?

Theorem (P., 2019)
Every post-singulary finite entire function has a Homotopy
Hubbard Tree and this tree is unique up to homotopy relative to
the post-singular set.

• Homotopy Hubbard Trees are a tool to prove the existence of
actual Hubbard Trees (in the cases where they exist).
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Why only require H to contain P(f ), but not all critical points?

• H is a finite embedded tree. The full Hubbard Tree is, in
general, infinite. The full tree can easily be recovered.

• Natural for Thurston Theory. The reduced tree gives rise to a
finite combinatorial object that distinguishes functions with
the same “geometry”.
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Classification via Hubbard Trees

Theorem (P., Rothgang, Schleicher - 2018)
Every post-singularly finite exponential map has a Homotopy
Hubbard Tree. This tree is unique up to homotopy relative to the
post-singular set.
For every abstract exponential Hubbard Tree, there is a unique
post-singularly finite exponential map realizing it.

The classification cycle:

Hubbard tree Holomorphic post-singularly finite map

Abstract Hubbard tree Topological post-singularly finite map

Forgetful
Forgetful

Thurston rigidity

1
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Construction of Homotopy Hubbard Trees

How can we prove the existence of (Homotopy)
Hubbard Trees for transcendental maps?

In the polynomial case, the topology of the Julia set was used to
prove existence and uniqueness of Hubbard Trees.

For a post-singularly finite transcendental entire function f , the
structure of J(f ) is, in general, not useful. In many cases, we have
J(f ) = C.
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Escaping sets and dynamic rays of polynomials

Φ: I(p)→C\D←−−−−−−−−
Böttcher map

The Böttcher map Φ is the unique conformal isomorphism from
I(p) onto C \ D satisfying limz→∞Φ(z)/z = 1.

The dynamic ray gθ of angle θ ∈ R/Z is the preimage
gθ = Φ−1((e2πiθ,∞)) of the straight radial line of angle θ under
the Böttcher map.
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Landing of dynamic rays

Figure: Julia set and Hubbard
Tree of the polnomial
z 7→ z2 + i . The rays of angle 1

7 ,2
7 , and

4
7 land together.

For a post-critically finite
polynomial, every dynamic ray
lands at a point in J(f ) and
every z ∈ J(f ) is the landing
point of a dynamic ray.

We call a point b ∈ J(f ) a
branch point if J(f ) \ {b} has
at least three connected
components.

Every branch point is
eventually periodic. All
periodic branch points of f
are contained in its Hubbard
Tree.
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Branch points of Hubbard Trees

Figure: A Homotopy Hubbard
Tree for the polynomial
z 7→ z2 + i

The set of dynamic rays
landing at post-singular
points and branch points is
forward invariant.

There is only one way up to
homotopy to connect the
post-singular points via a tree
T without intersecting these
rays.

The preimage tree also does
not intersect them. Therefore,
T is forward invariant up to
homotopy relative to the
post-singular set.
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Dreadlocks

Theorem (Decomposition of the escaping set, Benini, A.;
Rempe-Gillen, L. - 2017)
Let f be a post-singularly bounded. There is a natural
decomposition I(f ) =

⋃
· s∈S Gs into dreadlocks Gs parametrized by

external addresses. For every external address s ∈ S, the dreadlock
Gs is either empty or unbounded and connected.

Figure: This continuum, like many others, arises as a periodic Julia
continuum of a post-singularly finite entire function. 15 / 19



Periodic Dreadlocks

Theorem (Landing Theorem, Benini, A.; Rempe-Gillen, L. - 2017)
Let f be a post-singularly bounded entire function. Every periodic
dreadlock of f lands at a repelling or parabolic periodic point.
Conversely, every repelling and every parabolic periodic point of f
is the landing point of at least one and at most finitely many
dreadlocks all of which have the same period.

We use symbolic dynamics on the space of external addresses to
construct (pre-)periodic dreadlocks that land together and separate
post-singular points. Their landing points are the branch points
of the Homotopy Hubbard Tree.
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Construction of Homotopy Hubbard Trees

DŝƚƚǁŽĐŚ͕�ϮϬ͘�Dćƌǌ�ϮϬϭϵ ϭϵ͗ϱϱ

Theorem (Post-singular
separation)
Let f be a post-singularly
finite entire function, and let
p, q, r ∈ P(f ) be distinct
post-singular points. Then
the three points p, q, and r
are separated in one of the
four ways drawn to the left.
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Exactly invariant trees

�ŽŶŶĞƌƐƚĂŐ͕�Ϯϭ͘�Dćƌǌ�ϮϬϭϵ ϭϵ͗Ϭϱ

Find a domain U ⊃ H,H ′ and a conformal metric ρ (orbifold
metric, modified hyperbolic metric) such that f is expanding on U
w.r.t. ρ.
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Exactly invariant trees

�ŽŶŶĞƌƐƚĂŐ͕�Ϯϭ͘�Dćƌǌ�ϮϬϭϵ ϭϵ͗Ϭϱ

Choose a differentiable homotopy between H and the preimage H ′
in U.
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Exactly invariant trees

�ŽŶŶĞƌƐƚĂŐ͕�Ϯϭ͘�Dćƌǌ�ϮϬϭϵ ϭϵ͗Ϭϱ

Iteratively, lift the homotopy, to obtain a forward invariant
compact subset as a limit. Separating dreadlocks ensure that the
limiting object is a tree.
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A transcendental Hubbard Tree

Thank you for your
attention!

Figure: Hubbard Tree of
f (z) = cos(c(z + 1)),
c ≈ −0.68 + 1.00i . Picture by
Lasse Rempe-Gillen. 19 / 19


