Non-autonomous exponential maps: Hausdorff dimension of hair

Łukasz Pawelec

SGH Warsaw School of Economics

26 march 2019

A general non-autonomous system

Take a one-parameter analytic family $f_{\lambda}(z) = \lambda e^{z}$. Denote by $\Omega = (\mathbb{C} \setminus \{0\})^{\mathbb{N}}$ with the shift action $\sigma \colon \Lambda \to \Lambda$. For any sequence $\lambda = (\lambda_n)_{n=0}^{\infty} \in \Omega$ define f_{λ}^n as

$$f_{\lambda}^{n}=f_{\lambda_{n-1}}\circ f_{\lambda_{n-2}}\circ\cdots\circ f_{\lambda_{0}}.$$

A general non-autonomous system

Take a one-parameter analytic family $f_{\lambda}(z) = \lambda e^{z}$. Denote by $\Omega = (\mathbb{C} \setminus \{0\})^{\mathbb{N}}$ with the shift action $\sigma \colon \Lambda \to \Lambda$. For any sequence $\lambda = (\lambda_n)_{n=0}^{\infty} \in \Omega$ define f_{λ}^n as

$$f_{\lambda}^{n}=f_{\lambda_{n-1}}\circ f_{\lambda_{n-2}}\circ\cdots\circ f_{\lambda_{0}}.$$

Note that by this definition $f_{\lambda} = f_{\lambda_0}$, so

$$f_{\lambda}^{n} = f_{\sigma^{n-1}\lambda} \circ f_{\sigma^{n-2}\lambda} \circ \cdots \circ f_{\sigma\lambda} \circ f_{\lambda}.$$

A general non-autonomous system

Take a one-parameter analytic family $f_{\lambda}(z) = \lambda e^{z}$. Denote by $\Omega = (\mathbb{C} \setminus \{0\})^{\mathbb{N}}$ with the shift action $\sigma \colon \Lambda \to \Lambda$. For any sequence $\lambda = (\lambda_n)_{n=0}^{\infty} \in \Omega$ define f_{λ}^n as

$$f_{\lambda}^{n} = f_{\lambda_{n-1}} \circ f_{\lambda_{n-2}} \circ \cdots \circ f_{\lambda_{0}}.$$

Note that by this definition $f_{\lambda} = f_{\lambda_0}$, so

$$f_{\lambda}^{n} = f_{\sigma^{n-1}\lambda} \circ f_{\sigma^{n-2}\lambda} \circ \cdots \circ f_{\sigma\lambda} \circ f_{\lambda}.$$

One could also think of this as a skew-product:

$$F(\lambda, z) = (\sigma \lambda, \lambda e^z)$$

The Julia and Fatou sets are defined similarly to the typical situation (of equal λ_n). Namely,

Definition

The Fatou set $F(f_{\lambda})$ consists of all $z \in \mathbb{C}$ such that for some neighbourhood U of z the sequence $\{f_{\lambda}^{n}|_{U}\}$ forms a normal family.

The Julia set $J(f_{\lambda}) = \mathbb{C} \setminus F(f_{\lambda})$.

• lack of periodic points

- lack of periodic points
- lack of (pre-) periodic Fatou components

- lack of periodic points
- lack of (pre-) periodic Fatou components
- limited use of critical (asymptotic) values

- lack of periodic points
- lack of (pre-) periodic Fatou components
- limited use of critical (asymptotic) values
- Julia set may be empty

In this talk we are going to assume that for all *n* we have $\lambda_n \in \mathbb{R}$ and $\lambda_n \in [a, b]$, for some $b < +\infty$ and $a > \frac{1}{e}$.

In this talk we are going to assume that for all *n* we have $\lambda_n \in \mathbb{R}$ and $\lambda_n \in [a, b]$, for some $b < +\infty$ and $a > \frac{1}{e}$.

Theorem (Urbański, Zdunik)

Under assumptions as above $J(f_{\lambda}) = \mathbb{C}$.

In fact they proved more...

For any integer c define a horizontal strip

$$P_c = \{z \in \mathbb{C} : (2c-1)\pi < \operatorname{Im}(z) \le (2c+1)\pi\}.$$

Take any sequence $\bar{c} = (c_n)_{n=0}^{\infty} \in \mathbb{Z}^{\mathbb{N}}$.

For any integer c define a horizontal strip

$$P_c = \{z \in \mathbb{C} : (2c-1)\pi < \operatorname{Im}(z) \le (2c+1)\pi\}.$$

Take any sequence $\bar{c} = (c_n)_{n=0}^{\infty} \in \mathbb{Z}^{\mathbb{N}}$.

Definition

We say that a point $z \in \mathbb{C}$ has a code \overline{c} if for all $n \in \mathbb{N}$

 $f_{\lambda}^n(z) \in P_{c_n}$

Denote the set of all the points having a code \bar{c} as $\Lambda_{\bar{c}}$.

For any integer c define a horizontal strip

$$P_c = \{z \in \mathbb{C} : (2c-1)\pi < \operatorname{Im}(z) \le (2c+1)\pi\}.$$

Take any sequence $\bar{c} = (c_n)_{n=0}^{\infty} \in \mathbb{Z}^{\mathbb{N}}$.

Definition

We say that a point $z \in \mathbb{C}$ has a code \overline{c} if for all $n \in \mathbb{N}$

$$f_{\lambda_{n-1}} \circ f_{\lambda_{n-2}} \circ \cdots \circ f_{\lambda_0}(z) = f_{\lambda}^n(z) \in P_{c_n}$$

Denote the set of all the points having a code \bar{c} as $\Lambda_{\bar{c}}$.

3 N

• Devaney & Krych showed which codes are permissible.

- Devaney & Krych showed which codes are permissible.
- We may divide it into three subsets:

$$\Lambda_{\overline{c}} = \Lambda^{\infty}_{\overline{c}} \cup \Lambda^{\mathrm{bd}}_{\overline{c}} \cup \Lambda^{\mathrm{ubd}}_{\overline{c}}$$

- Devaney & Krych showed which codes are permissible.
- We may divide it into three subsets:

$$\Lambda_{\overline{c}} = \Lambda^{\infty}_{\overline{c}} \cup \Lambda^{\mathrm{bd}}_{\overline{c}} \cup \Lambda^{\mathrm{ubd}}_{\overline{c}}$$

• Viana da Silva proved that $\Lambda^\infty_{\bar{c}}$ is a $\mathcal{C}^\infty\text{-curve}$

- Devaney & Krych showed which codes are permissible.
- We may divide it into three subsets:

$$\Lambda_{\overline{c}} = \Lambda^{\infty}_{\overline{c}} \cup \Lambda^{\mathrm{bd}}_{\overline{c}} \cup \Lambda^{\mathrm{ubd}}_{\overline{c}}$$

- $\bullet\,$ Viana da Silva proved that $\Lambda^\infty_{\overline{c}}$ is a $\mathcal{C}^\infty\text{-curve}$
- If $\lambda > \frac{1}{e}$, then $\Lambda_{\overline{c}}^{\mathrm{bd}}$ is at most one point

- Devaney & Krych showed which codes are permissible.
- We may divide it into three subsets:

$$\Lambda_{\overline{c}} = \Lambda^{\infty}_{\overline{c}} \cup \Lambda^{\mathrm{bd}}_{\overline{c}} \cup \Lambda^{\mathrm{ubd}}_{\overline{c}}$$

- $\bullet\,$ Viana da Silva proved that $\Lambda^\infty_{\bar{c}}$ is a $\mathcal{C}^\infty\text{-curve}$
- If $\lambda > \frac{1}{e}$, then $\Lambda_{\overline{c}}^{\mathrm{bd}}$ is at most one point
- If $\Lambda_{\bar{c}}^{ubd} \neq \emptyset$, then either \bar{c} is unbounded or it contains infinitely many 0's.

 $\Lambda_{0,0,0\ldots}$ is symmetrical. Denote

$$\Lambda := \Lambda_{0,0,0...} \cap \{\mathsf{Im}(z) \geq 0\}$$

Why is it important?

 $\Lambda_{0,0,0\ldots}$ is symmetrical. Denote

$$\Lambda := \Lambda_{0,0,0...} \cap \{\mathsf{Im}(z) \geq 0\}$$

Why is it important?

Theorem (The strong version of Urbański, Zdunik)

If all $\lambda_n > 0$ and $int(\Lambda) = \emptyset$, then $J(f_{\lambda}) = \mathbb{C}$.

In the following assume that all $\lambda_n \in [a, b]$.

Theorem (P)

The set Λ after a natural compactification (with countably many points) at ∞ becomes an indecomposable continuum.

In the following assume that all $\lambda_n \in [a, b]$.

Theorem (P)

The set Λ after a natural compactification (with countably many points) at ∞ becomes an indecomposable continuum.

Theorem (P)

The set Λ has the Hausdorff dimension equal to 1. (but the Hausdorff measure is not σ -finite).

The previous results should (?) also hold if we assume:

for all $n \in \mathbb{N}$ we have $\lambda_n \in [\varepsilon, M]$ and for all $k \in \mathbb{N}$ we have $\lim_{n \to +\infty} f_{\sigma^k \lambda}^n(0) = \infty$