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A general non-autonomous system

Take a one-parameter analytic family f\(z) = \e”.
Denote by Q = (C \ {0})Y with the shift action o: A — A.
For any sequence A = (A\,)72, € Q define f" as

f)\n = f>\n—1 0 f>\n—2 ©--0 f)‘O
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Note that by this definition f\ = f,,, so

f\ = fin—1)y 0 fn—2y0---0fyy0f.
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A general non-autonomous system

Take a one-parameter analytic family f\(z) = \e”.
Denote by Q = (C \ {0})Y with the shift action o: A — A.
For any sequence A = (A\,)72, € Q define f" as

i ="Ff, 00, ,0 - 0f.
Note that by this definition f\ = f,,, so
f\ = fin—1)y 0 fn—2y0---0fyy0f.
One could also think of this as a skew-product:

F(X, z) = (oA, \ée?)
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Julia and Fatou sets

The Julia and Fatou sets are defined similarly to the typical
situation (of equal A,). Namely,

Definition

The Fatou set F(fy) consists of all z € C such that for some
neighbourhood U of z the sequence {f{’|y} forms a normal family.

The Julia set J(f\) = C\ F(f).
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There are several basic/essential problems with studying such
systems:
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@ lack of periodic points
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There are several basic/essential problems with studying such
systems:

@ lack of periodic points

@ lack of (pre-) periodic Fatou components
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There are several basic/essential problems with studying such
systems:

@ lack of periodic points
@ lack of (pre-) periodic Fatou components

@ limited use of critical (asymptotic) values
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There are several basic/essential problems with studying such
systems:

@ lack of periodic points
@ lack of (pre-) periodic Fatou components
@ limited use of critical (asymptotic) values

@ Julia set may be empty
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Stricter assumptions

In this talk we are going to assume that for all n we have A\, € R
and A\, € [a, b], for some b < +oc and a > %
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Stricter assumptions

In this talk we are going to assume that for all n we have A\, € R
and A\, € [a, b], for some b < +oc and a > %

Theorem (Urbanski, Zdunik)

Under assumptions as above J(f,) = C.

In fact they proved more...
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For any integer ¢ define a horizontal strip
Pc={zeC:(2c—1)m <Im(z) < (2c + 1)7}.

Take any sequence ¢ = (c,)2, € ZN.
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For any integer ¢ define a horizontal strip
Pc={zeC:(2c—1)m <Im(z) < (2c + 1)7}.

Take any sequence ¢ = (c,)2, € ZN.

Definition

We say that a point z € C has acode ¢ if for all ne N

\'(z) € P,

Denote the set of all the points having a code ¢ as Az.
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For any integer ¢ define a horizontal strip
Pc={zeC:(2c—1)m <Im(z) < (2c + 1)7}.

Take any sequence ¢ = (c,)2, € ZN.

Definition

We say that a point z € C has acode ¢ if for all ne N

f)\n—l © f)\n—z ©@cec@ f)\o(z) = f)?(z) € PCn

Denote the set of all the points having a code ¢ as Az.
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Autonomous system recap

For a moment assume that A\, = const € R.
What can we say about Ag?
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@ Devaney & Krych showed which codes are permissible.
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@ We may divide it into three subsets:

bd bd
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Autonomous system recap

For a moment assume that A\, = const € R.
What can we say about Ag?

@ Devaney & Krych showed which codes are permissible.

@ We may divide it into three subsets:

bd bd

@ Viana da Silva proved that AZ° is a C*°-curve
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Autonomous system recap

For a moment assume that A\, = const € R.
What can we say about Ag?

@ Devaney & Krych showed which codes are permissible.

@ We may divide it into three subsets:

bd bd

@ Viana da Silva proved that AZ° is a C*°-curve

o If A > 1 then A24 is at most one point
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Autonomous system recap

For a moment assume that A\, = const € R.
What can we say about Ag?

@ Devaney & Krych showed which codes are permissible.

@ We may divide it into three subsets:

bd bd

Viana da Silva proved that A2° is a C*°-curve

If A > 1 then ARd is at most one point
e Cc

If AZbd £ (), then either € is unbounded or it contains infinitely
many 0's.
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The most important code

No,0,0... is symmetrical. Denote
A= /\0,0’0“. N {Im(z) > 0}

Why is it important?

tukasz Pawelec Non-autonomous exponential maps



The most important code

No,0,0... is symmetrical. Denote
A= /\0,0’0“. N {Im(z) > 0}

Why is it important?

Theorem (The strong version of Urbanski, Zdunik)

If all A\, > 0 and int(\) = 0, then J(f,) = C.
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Properties of A

In the following assume that all \, € [a, b].

Theorem (P)

The set N\ after a natural compactification (with countably many
points) at co becomes an indecomposable continuum.
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Properties of A

In the following assume that all \, € [a, b].

Theorem (P)

The set N\ after a natural compactification (with countably many
points) at co becomes an indecomposable continuum.

Theorem (P)

The set N\ has the Hausdorff dimension equal to 1.
(but the Hausdorff measure is not o-finite).
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Hopes and expectations

The previous results should (?7) also hold if we assume:
for all n € N we have \, € [¢, M]

and for all k € N we have lim £/ ,(0) = oo
n—+00
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