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Question 1. Do dynamic rays exist for transcendental entire
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- Yes for fa,b(z) = aez + be−z. (Schleicher & Zimmer ’04).

- Not in general; counterexample in ([RRRS] 11’)
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(Barański 07’)([RRRS]).



Transcendental dynamics

Question 1. Do dynamic rays exist for transcendental entire
functions?

- First examples for fλ(z) = λez. (Devaney et. al. ’84-86)

- Yes for fλ(z) = λez. (Rottenfußer & Schleicher ’03).

- Yes for fa,b(z) = aez + be−z. (Schleicher & Zimmer ’04).

- Not in general; counterexample in ([RRRS] 11’)

- Yes for functions of finite order in class B.
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Singular values

The set of singular values S(f) is the smallest closed subset
of C such that f : C \ f−1(S(f))→ C \ S(f) is a covering map.

S(f) = { asymptotic and critical values of f }

? f entire transcendental is in class B ⇔ S(f) is bounded.

The postsingular set of f is defined as

P (f) =
⋃
n≥0

fn(S(f)).

? fk : C \ O−(S(f))→ C \ P (f) is a covering map for all k ≥ 0.
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Dynamic rays

Definition (RRRS)

• a ray tail is an injective curve γ : [t0,∞)→ I(f), with
t0 > 0 such that

• For each n ≥ 1, fn(γ(t)) is injective and lim
t→∞

fn(γ(t)) =∞.

• fn(γ(t))
n→∞−−−−→∞ uniformly in t.

• A dynamic ray of f is a maximal injective curve
γ : (0,∞)→ I(f) such that γ|[t,∞) is a ray tail for every
t > 0.

• We say that γ lands at z if limt→0 γ(t) = z.
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Transcendental dynamics

Question 2. Do dynamic rays always land?

• In the exponential family, fλ(z) = ez + λ, all rays land
when fλ has an attracting or parabolic orbit.
(Devaney ’93, Devaney & Jarque ’01, Rempe-Gillen ’06).

• In the cosine family, fa,b(z) = aez + be−z, all rays land
when P (f) is strictly preperiodic (Schleicher ’06) .

• For certain functions of finite order with
bounded postsingular set, all dynamic rays land.

• Not always dynamic rays land. For example, exponential
map with escaping singular value. (Rempe-Gillen ’07).
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Question 3. Can we relate the dynamics to that of a simpler
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(Mihaljević-Brandt’12) .



Transcendental dynamics

Question 3. Can we relate the dynamics to that of a simpler
map or build a model for the dynamics of the function on its
Julia set?

• Model in the exponential family for attracting and
parabolic orbits. (Rempe-Gillen ’06).

• Model for finite order disjoint type (i.e. P (f) b F (f)
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? Polynomials: orbits of singular values are either bounded or
converge to infinity.

? Transcendental maps: singular orbits are bounded, converge
to infinity or neither of the two (bungee set).
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What if P (f) is unbounded?

? Polynomials: orbits of singular values are either bounded or
converge to infinity.

? Transcendental maps: singular orbits are bounded, converge
to infinity or neither of the two (bungee set).

Example

Let f = cosh.

• S(f) = {−1, 1} and P (f) = {−1} ∪Orb+(1).

• J(f) = C.

• Dynamic rays “split” at the critical points {πik, k ∈ Z}.
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Theorem A
There exists a class of transcendental entire functions with
unbounded postsingular set for which

1. every point in their Julia set is either in a dynamic ray or
it is the landing point of at least one ray,

2. every dynamic ray lands, and

3. there exists a topological model for the dynamics of the
function on its Julia set.
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Strongly poscritically separated functions

Definition
We say that f ∈ B is strongly postcritically separated if:

• P (f) ∩ F (f) compact and P (f) ∩ J(f) discrete.

• There exist M > 0,K > 1 such that for all r > 0

card
({
z ∈ P (f) such that z ∈ A(r,Kr)

})
≤M.

• f has bounded criticality in J(f).

Theorem B
If f is strongly postcritically separated, then f is expanding
with respect to some conformal metric that admits a discrete
set of cone singularities.
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Finding a model

? If f ∈ B, candidate for a “simpler map” to construct a model?

• For λ small enough, gλ := λf is of disjoint type and gλ is in
the parameter space of f .

Moreover, the following analogue of Böttcher’s Theorem holds:

Theorem (Rempe-Gillen ’09)

There exist a constant R > 0 and a quasiconformal map
ϑ : C→ C such that ϑ ◦ f = gλ ◦ ϑ for all z ∈ JR(g), with

JR(gλ) := {z ∈ C : |gnλ(z)| ≥ R for all n ≥ 1}.
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Results

Theorem A
Let f ∈ CB and strongly postcritically separated. Then

1. every point in their J(f) is either in a dynamic ray or it is
the landing point of at least one ray,

2. every dynamic ray of f lands, and

3. there exists a topological model for the dynamics of f in
J(f).



Characterization of Cantor Bouquets

Theorem
A set X ⊂ C is a Cantor Bouquet if and only if the following
conditions are satisfied:

1. X is closed.

2. Every connected component of X is an arc connecting
a finite endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs
[yn,∞) converge to [y,∞) in the Hausdorff metric.

4. The endpoints of X are dense in X.

5. If x ∈ X is accessible from C \X, then x is an endpoint of
X. (Equivalently, every hair of X is accumulated on by
other hairs from both sides.)



Characterization of Cantor Bouquets

Theorem
A set X ⊂ C is a Cantor Bouquet if and only if the following
conditions are satisfied:

1. X is closed.

2. Every connected component of X is an arc connecting
a finite endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs
[yn,∞) converge to [y,∞) in the Hausdorff metric.

4. The endpoints of X are dense in X.

5. If x ∈ X is accessible from C \X, then x is an endpoint of
X. (Equivalently, every hair of X is accumulated on by
other hairs from both sides.)



Characterization of Cantor Bouquets

Theorem
A set X ⊂ C is a Cantor Bouquet if and only if the following
conditions are satisfied:

1. X is closed.

2. Every connected component of X is an arc connecting
a finite endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs
[yn,∞) converge to [y,∞) in the Hausdorff metric.

4. The endpoints of X are dense in X.

5. If x ∈ X is accessible from C \X, then x is an endpoint of
X. (Equivalently, every hair of X is accumulated on by
other hairs from both sides.)



Characterization of Cantor Bouquets

Theorem
A set X ⊂ C is a Cantor Bouquet if and only if the following
conditions are satisfied:

1. X is closed.

2. Every connected component of X is an arc connecting
a finite endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs
[yn,∞) converge to [y,∞) in the Hausdorff metric.

4. The endpoints of X are dense in X.

5. If x ∈ X is accessible from C \X, then x is an endpoint of
X. (Equivalently, every hair of X is accumulated on by
other hairs from both sides.)



Characterization of Cantor Bouquets

Theorem
A set X ⊂ C is a Cantor Bouquet if and only if the following
conditions are satisfied:

1. X is closed.

2. Every connected component of X is an arc connecting
a finite endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs
[yn,∞) converge to [y,∞) in the Hausdorff metric.

4. The endpoints of X are dense in X.

5. If x ∈ X is accessible from C \X, then x is an endpoint of
X. (Equivalently, every hair of X is accumulated on by
other hairs from both sides.)



Characterization of Cantor Bouquets

Theorem
A set X ⊂ C is a Cantor Bouquet if and only if the following
conditions are satisfied:

1. X is closed.

2. Every connected component of X is an arc connecting
a finite endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs
[yn,∞) converge to [y,∞) in the Hausdorff metric.

4. The endpoints of X are dense in X.

5. If x ∈ X is accessible from C \X, then x is an endpoint of
X. (Equivalently, every hair of X is accumulated on by
other hairs from both sides.)



Cantor Julia sets

Proposition

Let f be an entire function so that J(f) is a Cantor Bouquet.
Then,

(A) J(f) does not contain critical values nor logarithmic
asymptotic values.

(B) If z ∈ J(f) ∩ I(f) and γ is the (piece of) hair joining z to
infinity, then fn|γ →∞ uniformly.

If in addition g is of disjoint type, then each hair of J(g) is a
dynamic ray together with its endpoint.
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Criniferous functions

Definition
An entire function f is said to be criniferous if every z ∈ I(f) is
eventually mapped to a ray tail.

If f is a disjoint type and criniferous, then

1. J(f) is closed.

2. Every connected component of J(f) is an arc
connecting a finite endpoint to infinity.

3. For any sequence yn → y, the arcs [yn,∞) converge
to [y,∞) in the Hausdorff metric. ??

4. The endpoints of J(f) are dense in J(f). ??

5. Every hair of J(f) is accumulated on by other hairs
from both sides.
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Criniferous vs Cantor Bouquet

If f is disjoint type then

J(f) Cantor Bouquet =⇒ f criniferous.

Open question:

f criniferous =⇒ J(f) Cantor Bouquet?
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Thanks for your attention!
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