On a class of transcendental entire functions

Leticia Pardo Simón

University of Liverpool

TCD2019,Barcelona, 25^{th} March, 2019

For a polynomial $p_d(z) = z^d + a_{d-1}z^{d-1}z^{d-1} + \cdots$

For a polynomial $p_d(z) = z^d + a_{d-1}z^{d-1}z^{d-1} + \cdots$

1. **Dynamic rays** as preimages of radial lines under Böttcher's map.

For a polynomial $p_d(z) = z^d + a_{d-1}z^{d-1}z^{d-1} + \cdots$

- 1. **Dynamic rays** as preimages of radial lines under Böttcher's map.
- 2. If $J(p_d)$ is connected, then **all rays land** if and only if $J(p_d)$ is locally connected.

For a polynomial $p_d(z) = z^d + a_{d-1}z^{d-1}z^{d-1} + \cdots$

- 1. **Dynamic rays** as preimages of radial lines under Böttcher's map.
- 2. If $J(p_d)$ is connected, then **all rays land** if and only if $J(p_d)$ is locally connected.
- Dynamics better understood using the simpler map z^d. (In particular, Douady's Pinched Disk model.)

Question 1. Do dynamic rays exist for *transcendental entire* functions?

- First examples for $f_{\lambda}(z) = \lambda e^{z}$. (Devaney et. al. '84-86)

- First examples for $f_{\lambda}(z) = \lambda e^{z}$. (Devaney et. al. '84-86)
- Yes for $f_{\lambda}(z) = \lambda e^{z}$. (Rottenfußer & Schleicher '03).

- First examples for $f_{\lambda}(z) = \lambda e^{z}$. (Devaney et. al. '84-86)
- Yes for $f_{\lambda}(z) = \lambda e^{z}$. (Rottenfußer & Schleicher '03).
- Yes for $f_{a,b}(z) = ae^z + be^{-z}$. (Schleicher & Zimmer '04).

- First examples for $f_{\lambda}(z) = \lambda e^{z}$. (Devaney et. al. '84-86)
- Yes for $f_{\lambda}(z) = \lambda e^{z}$. (Rottenfußer & Schleicher '03).
- Yes for $f_{a,b}(z) = ae^z + be^{-z}$. (Schleicher & Zimmer '04).
- Not in general; counterexample in ([RRRS] 11')

- First examples for $f_{\lambda}(z) = \lambda e^{z}$. (Devaney et. al. '84-86)
- Yes for $f_{\lambda}(z) = \lambda e^{z}$. (Rottenfußer & Schleicher '03).
- Yes for $f_{a,b}(z) = ae^z + be^{-z}$. (Schleicher & Zimmer '04).
- Not in general; counterexample in ([RRRS] 11')
- Yes for functions of finite order in class \mathcal{B} . (Barański 07')([RRRS]).

Singular values

The set of **singular values** S(f) is the smallest closed subset of \mathbb{C} such that $f : \mathbb{C} \setminus f^{-1}(S(f)) \to \mathbb{C} \setminus S(f)$ is a covering map.

 $S(f) = \overline{\{ \text{ asymptotic and critical values of } f \} }$

* f entire transcendental is in class $\mathcal{B} \Leftrightarrow S(f)$ is bounded.

Singular values

The set of **singular values** S(f) is the smallest closed subset of \mathbb{C} such that $f : \mathbb{C} \setminus f^{-1}(S(f)) \to \mathbb{C} \setminus S(f)$ is a covering map.

 $S(f) = \overline{\{ \text{ asymptotic and critical values of } f \} }$

* f entire transcendental is in class $\mathcal{B} \Leftrightarrow S(f)$ is bounded.

The **postsingular set** of f is defined as

$$P(f) = \overline{\bigcup_{n \ge 0} f^n(S(f))}.$$

* $f^k : \mathbb{C} \setminus \mathcal{O}^-(S(f)) \to \mathbb{C} \setminus P(f)$ is a covering map for all $k \ge 0$.

Definition (RRRS)

• a **ray tail** is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that

Definition (RRRS)

- a ray tail is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that
 - For each $n \ge 1$, $f^n(\gamma(t))$ is injective and $\lim_{t \to \infty} f^n(\gamma(t)) = \infty$.

Definition (RRRS)

- a ray tail is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that
 - For each $n \ge 1$, $f^n(\gamma(t))$ is injective and $\lim_{t\to\infty} f^n(\gamma(t)) = \infty$.

•
$$f^n(\gamma(t)) \xrightarrow{n \to \infty} \infty$$
 uniformly in t.

Definition (RRRS)

- a ray tail is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that
 - For each $n \ge 1$, $f^n(\gamma(t))$ is injective and $\lim_{t \to \infty} f^n(\gamma(t)) = \infty$.

•
$$f^n(\gamma(t)) \xrightarrow{n \to \infty} \infty$$
 uniformly in t.

• A dynamic ray of f is a maximal injective curve $\gamma: (0, \infty) \to I(f)$ such that $\gamma|_{[t,\infty)}$ is a ray tail for every t > 0.

Definition (RRRS)

- a ray tail is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that
 - For each $n \ge 1$, $f^n(\gamma(t))$ is injective and $\lim_{t \to \infty} f^n(\gamma(t)) = \infty$.

•
$$f^n(\gamma(t)) \xrightarrow{n \to \infty} \infty$$
 uniformly in t.

- A dynamic ray of f is a maximal injective curve $\gamma: (0, \infty) \to I(f)$ such that $\gamma|_{[t,\infty)}$ is a ray tail for every t > 0.
- We say that γ lands at z if $\lim_{t\to 0} \gamma(t) = z$.

Question 2. Do dynamic rays always land?

 In the exponential family, f_λ(z) = e^z + λ, all rays land when f_λ has an attracting or parabolic orbit. (Devaney '93, Devaney & Jarque '01, Rempe-Gillen '06).

- In the exponential family, f_λ(z) = e^z + λ, all rays land when f_λ has an attracting or parabolic orbit. (Devaney '93, Devaney & Jarque '01, Rempe-Gillen '06).
- In the cosine family, $f_{a,b}(z) = ae^z + be^{-z}$, all rays land when P(f) is strictly preperiodic (Schleicher '06).

- In the exponential family, f_λ(z) = e^z + λ, all rays land when f_λ has an attracting or parabolic orbit. (Devaney '93, Devaney & Jarque '01, Rempe-Gillen '06).
- In the cosine family, $f_{a,b}(z) = ae^z + be^{-z}$, all rays land when P(f) is strictly preperiodic (Schleicher '06).
- For certain functions of finite order with bounded postsingular set, all dynamic rays land.

- In the exponential family, f_λ(z) = e^z + λ, all rays land when f_λ has an attracting or parabolic orbit. (Devaney '93, Devaney & Jarque '01, Rempe-Gillen '06).
- In the cosine family, $f_{a,b}(z) = ae^z + be^{-z}$, all rays land when P(f) is strictly preperiodic (Schleicher '06).
- For certain functions of finite order with bounded postsingular set, all dynamic rays land.
- Not always dynamic rays land. For example, exponential map with escaping singular value. (Rempe-Gillen '07).

Question 3. Can we relate the dynamics to that of a *simpler* map or build a model for the dynamics of the function on its Julia set?

• Model in the *exponential family* for attracting and parabolic orbits. (Rempe-Gillen '06).

- Model in the *exponential family* for attracting and parabolic orbits. (Rempe-Gillen '06).
- Model for finite order *disjoint type* (i.e. $P(f) \subseteq F(f)$ connected) functions. (Barański, Jarque & Rempe-Gillen '12).

- Model in the *exponential family* for attracting and parabolic orbits. (Rempe-Gillen '06).
- Model for finite order disjoint type (i.e. $P(f) \in F(f)$ connected) functions. (Barański, Jarque & Rempe-Gillen '12).
- Model for hyperbolic (i.e. $P(f) \subseteq F(f)$) functions. (Rempe-Gillen '09).

- Model in the *exponential family* for attracting and parabolic orbits. (Rempe-Gillen '06).
- Model for finite order disjoint type (i.e. $P(f) \subseteq F(f)$ connected) functions. (Barański, Jarque & Rempe-Gillen '12).
- Model for hyperbolic (i.e. $P(f) \subseteq F(f)$) functions. (Rempe-Gillen '09).
- Model for *strongly subhyperbolic* functions. (Mihaljević-Brandt'12) .

 \star Polynomials: orbits of singular values are either bounded or converge to infinity.

 \star Polynomials: orbits of singular values are either bounded or converge to infinity.

* Transcendental maps: singular orbits are bounded, converge to infinity or neither of the two (*bungee set*).

 \star Polynomials: orbits of singular values are either bounded or converge to infinity.

 \star Transcendental maps: singular orbits are bounded, converge to infinity or neither of the two (*bungee set*).

Example

Let $f = \cosh$.
What if P(f) is unbounded?

 \star Polynomials: orbits of singular values are either bounded or converge to infinity.

* Transcendental maps: singular orbits are bounded, converge to infinity or neither of the two (*bungee set*).

Example

Let $f = \cosh$.

• $S(f) = \{-1, 1\}$ and $P(f) = \{-1\} \cup \text{Orb}^+(1)$.

What if P(f) is unbounded?

 \star Polynomials: orbits of singular values are either bounded or converge to infinity.

* Transcendental maps: singular orbits are bounded, converge to infinity or neither of the two (*bungee set*).

Example

Let $f = \cosh$.

• $S(f) = \{-1, 1\}$ and $P(f) = \{-1\} \cup \text{Orb}^+(1)$.

•
$$J(f) = \mathbb{C}$$
.

Dynamic rays

Definition

- A ray tail is an injective curve $\gamma : [t_0, \infty) \to I(f)$, with $t_0 > 0$ such that
 - For each $n \ge 1$, $f^n(\gamma(t))$ is injective and $\lim_{t\to\infty} f^n(\gamma(t)) = \infty$.
 - $f^n(\gamma(t)) \xrightarrow{n \to \infty} \infty$ uniformly in t.
- A dynamic ray of f is a maximal injective curve $\gamma: (0, \infty) \to I(f)$ such that $\gamma_{|[t,\infty)}$ is a ray tail for every t > 0.
- We say that γ lands at z if $\lim_{t\to 0} \gamma(t) = z$

What if P(f) is unbounded?

 \star Polynomials: orbits of singular values are either bounded or converge to infinity.

 \star Transcendental maps: singular orbits are bounded, converge to infinity or neither of the two (*bungee set*).

Example

Let $f = \cosh$.

- $S(f) = \{-1, 1\}$ and $P(f) = \{-1\} \cup \text{Orb}^+(1)$.
- $J(f) = \mathbb{C}$.
- Dynamic rays "split" at the critical points $\{\pi ik, k \in \mathbb{Z}\}$.

Theorem A

There exists a class of transcendental entire functions with **unbounded** postsingular set for which

Theorem A

There exists a class of transcendental entire functions with **unbounded** postsingular set for which

1. *every point in* their Julia set is either in a *dynamic ray* or it is the landing point of at least one ray,

Theorem A

There exists a class of transcendental entire functions with **unbounded** postsingular set for which

- 1. *every point in* their Julia set is either in a *dynamic ray* or it is the landing point of at least one ray,
- 2. every dynamic ray lands, and

Theorem A

There exists a class of transcendental entire functions with **unbounded** postsingular set for which

- 1. *every point in* their Julia set is either in a *dynamic ray* or it is the landing point of at least one ray,
- 2. every dynamic ray *lands*, and
- 3. there exists a *topological model* for the dynamics of the function on its Julia set.

Definition

We say that $f \in \mathcal{B}$ is strongly postcritically separated if:

• $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.

Definition

We say that $f \in \mathcal{B}$ is strongly postcritically separated if:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.
- There exist M > 0, K > 1 such that for all r > 0

card $(\{z \in P(f) \text{ such that } z \in A(r, Kr)\}) \leq M.$

Definition

We say that $f \in \mathcal{B}$ is strongly postcritically separated if:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.
- There exist M > 0, K > 1 such that for all r > 0

card $(\{z \in P(f) \text{ such that } z \in A(r, Kr)\}) \leq M.$

• f has bounded criticality in J(f).

Definition

We say that $f \in \mathcal{B}$ is strongly postcritically separated if:

- $P(f) \cap F(f)$ compact and $P(f) \cap J(f)$ discrete.
- There exist M > 0, K > 1 such that for all r > 0

card $(\{z \in P(f) \text{ such that } z \in A(r, Kr)\}) \leq M.$

• f has bounded criticality in J(f).

Theorem B

If f is strongly postcritically separated, then f is *expanding* with respect to some conformal metric that admits a discrete set of *cone singularities*.

* If $f \in \mathcal{B}$, candidate for a "simpler map" to construct a model?

- \star If $f \in \mathcal{B}$, candidate for a "simpler map" to construct a model?
 - For λ small enough, $g_{\lambda} := \lambda f$ is of *disjoint type* and g_{λ} is in the parameter space of f.

- \star If $f \in \mathcal{B}$, candidate for a "simpler map" to construct a model?
 - For λ small enough, $g_{\lambda} := \lambda f$ is of *disjoint type* and g_{λ} is in the parameter space of f.

Moreover, the following analogue of Böttcher's Theorem holds:

- * If $f \in \mathcal{B}$, candidate for a "simpler map" to construct a model?
 - For λ small enough, $g_{\lambda} := \lambda f$ is of *disjoint type* and g_{λ} is in the parameter space of f.

Moreover, the following analogue of Böttcher's Theorem holds: Theorem (Rempe-Gillen '09)

There exist a constant R > 0 and a quasiconformal map $\vartheta : \mathbb{C} \to \mathbb{C}$ such that $\vartheta \circ f = g_{\lambda} \circ \vartheta$ for all $z \in J_R(g)$, with

$$J_R(g_{\lambda}) := \{ z \in \mathbb{C} : |g_{\lambda}^n(z)| \ge R \text{ for all } n \ge 1 \}.$$

 \star Previous models for transcendental maps:

 \star Previous models for transcendental maps:

• If f is of finite order and of disjoint type, then J(f) is a Cantor Bouquet. (Barański, Jarque & Rempe-Gillen '12)

 \star Previous models for transcendental maps:

• If f is of finite order and of disjoint type, then J(f) is a Cantor Bouquet. (Barański, Jarque & Rempe-Gillen '12)

- \star Previous models for transcendental maps:
 - If f is of finite order and of disjoint type then J(f) is a Cantor Bouquet. [B,J, R-G '12]
 - If f is of finite order and strongly subhyperbolic, then J(f) is a *Pinched Cantor Bouquet*. [M-B '12]

 \star Previous models for transcendental maps:

- If f is of finite order and of disjoint type then J(f) is a Cantor Bouquet. [B,J, R-G '12]
- If f is of finite order and strongly subhyperbolic, then J(f) is a *Pinched Cantor Bouquet*. [M-B '12]

 \star Previous models for transcendental maps:

- If f is of finite order and of disjoint type then J(f) is a Cantor Bouquet. [B,J, R-G '12]
- If f is of finite order and strongly subhyperbolic, then J(f) is a *Pinched Cantor Bouquet*. [M-B '12]

Proposal

To study the class of maps

$$\mathcal{CB} = \begin{cases} f \in \mathcal{B} : \text{ exists } \lambda \in \mathbb{C} : g_{\lambda} = \lambda f \text{ is of disjoint type} \\ \text{ and } J(g_{\lambda}) \text{ is a Cantor Bouquet.} \end{cases}$$

Theorem A

Let $f \in \mathcal{CB}$ and strongly postcritically separated. Then

- 1. every point in their J(f) is either in a dynamic ray or it is the landing point of at least one ray,
- 2. every dynamic ray of f lands, and
- 3. there exists a topological model for the dynamics of f in J(f).

Theorem

Theorem

A set $X \subset \mathbb{C}$ is a *Cantor Bouquet* if and only if the following conditions are satisfied:

1. X is closed.

Theorem

- 1. X is closed.
- 2. Every **connected component** of X is an **arc** connecting a finite endpoint to infinity.

Theorem

- 1. X is closed.
- 2. Every **connected component** of X is an **arc** connecting a finite endpoint to infinity.
- 3. For any sequence y_n converging to a point y, the arcs $[y_n, \infty)$ converge to $[y, \infty)$ in the Hausdorff metric.

Theorem

- 1. X is closed.
- 2. Every **connected component** of X is an **arc** connecting a finite endpoint to infinity.
- 3. For any sequence y_n converging to a point y, the arcs $[y_n, \infty)$ converge to $[y, \infty)$ in the Hausdorff metric.
- 4. The **endpoints** of X are **dense** in X.

Theorem

- 1. X is closed.
- 2. Every **connected component** of X is an **arc** connecting a finite endpoint to infinity.
- 3. For any sequence y_n converging to a point y, the arcs $[y_n, \infty)$ converge to $[y, \infty)$ in the Hausdorff metric.
- 4. The **endpoints** of X are **dense** in X.
- 5. If $x \in X$ is accessible from $\mathbb{C} \setminus X$, then x is an endpoint of X. (Equivalently, every hair of X is accumulated on by other hairs from both sides.)

Proposition

Let f be an entire function so that J(f) is a Cantor Bouquet. Then,

Proposition

Let f be an entire function so that J(f) is a Cantor Bouquet. Then,

(A) J(f) does not contain critical values nor logarithmic asymptotic values.

Proposition

Let f be an entire function so that J(f) is a Cantor Bouquet. Then,

- (A) J(f) does not contain critical values nor logarithmic asymptotic values.
- (B) If $z \in J(f) \cap I(f)$ and γ is the (piece of) hair joining z to infinity, then $f_{|\gamma}^n \to \infty$ uniformly.

Proposition

Let f be an entire function so that J(f) is a Cantor Bouquet. Then,

- (A) J(f) does not contain critical values nor logarithmic asymptotic values.
- (B) If $z \in J(f) \cap I(f)$ and γ is the (piece of) hair joining z to infinity, then $f_{|\gamma}^n \to \infty$ uniformly.

If in addition g is of disjoint type, then each hair of J(g) is a dynamic ray together with its endpoint.

Criniferous functions

Definition

An entire function f is said to be *criniferous* if every $z \in I(f)$ is eventually mapped to a ray tail.

Criniferous functions

Definition

An entire function f is said to be *criniferous* if every $z \in I(f)$ is eventually mapped to a ray tail.

If f is a disjoint type and criniferous, then

1. J(f) is closed.

Criniferous functions

Definition

An entire function f is said to be *criniferous* if every $z \in I(f)$ is eventually mapped to a ray tail.

- If f is a disjoint type and criniferous, then
 - 1. J(f) is closed.
 - 2. Every connected component of J(f) is an arc connecting a finite endpoint to infinity.
Criniferous functions

Definition

An entire function f is said to be *criniferous* if every $z \in I(f)$ is eventually mapped to a ray tail.

- If f is a disjoint type and criniferous, then
 - 1. J(f) is closed.
 - 2. Every connected component of J(f) is an arc connecting a finite endpoint to infinity.

5. Every hair of J(f) is accumulated on by other hairs from both sides.

Criniferous functions

Definition

An entire function f is said to be *criniferous* if every $z \in I(f)$ is eventually mapped to a ray tail.

- If f is a disjoint type and criniferous, then
 - 1. J(f) is closed.
 - 2. Every connected component of J(f) is an arc connecting a finite endpoint to infinity.
 - 3. For any sequence $y_n \to y$, the arcs $[y_n, \infty)$ converge to $[y, \infty)$ in the Hausdorff metric. ??
 - 5. Every hair of J(f) is accumulated on by other hairs from both sides.

Criniferous functions

Definition

An entire function f is said to be *criniferous* if every $z \in I(f)$ is eventually mapped to a ray tail.

- If f is a disjoint type and criniferous, then
 - 1. J(f) is closed.
 - 2. Every connected component of J(f) is an arc connecting a finite endpoint to infinity.
 - 3. For any sequence $y_n \to y$, the arcs $[y_n, \infty)$ converge to $[y, \infty)$ in the Hausdorff metric. ??
 - 4. The endpoints of J(f) are dense in J(f). ??
 - 5. Every hair of J(f) is accumulated on by other hairs from both sides.

Criniferous vs Cantor Bouquet

If f is disjoint type then

J(f) Cantor Bouquet $\Longrightarrow f$ criniferous.

Criniferous vs Cantor Bouquet

If f is disjoint type then

J(f) Cantor Bouquet $\Longrightarrow f$ criniferous.

Open question:

f criniferous $\implies J(f)$ Cantor Bouquet?

Thanks for your attention!