Bounded Hyperbolic Components of Bicritical Rational Maps

> Hongming Nie (joint with K. Pilgrim)

The Hebrew University of Jerusalem

Topics in Complex Dynamics 2019 Barcelona, Spain

A complex rational map f : P¹ → P¹ is hyperbolic if each critical point converges under iteration to an attracting cycle.

- A complex rational map f : P¹ → P¹ is hyperbolic if each critical point converges under iteration to an attracting cycle.
- ► The set of hyperbolic rational maps of degree d ≥ 2 is an open set in the space Rat_d of degree d rationals maps. It descends an open set in the muduli space rat_d := Rat_d/Aut(P¹).

- A complex rational map f : P¹ → P¹ is hyperbolic if each critical point converges under iteration to an attracting cycle.
- ► The set of hyperbolic rational maps of degree d ≥ 2 is an open set in the space Rat_d of degree d rationals maps. It descends an open set in the muduli space rat_d := Rat_d/Aut(P¹).
- Each component of the set of hyperbolic maps is called a hyperbolic component.

- A complex rational map f : P¹ → P¹ is hyperbolic if each critical point converges under iteration to an attracting cycle.
- ► The set of hyperbolic rational maps of degree d ≥ 2 is an open set in the space Rat_d of degree d rationals maps. It descends an open set in the muduli space rat_d := Rat_d/Aut(P¹).
- Each component of the set of hyperbolic maps is called a hyperbolic component.
- type D hyperbolic component: each map has maximal number of disjoint attracting cycles.
 strict type D hyperbolic component: type D + each attracting cycle has period at least 2.

Bounded hyperbolic components

Let $V \subset \operatorname{rat}_d$ be a subvariety. We say a hyperbolic component $\mathcal{H} \subset V$ is *bounded* if its closure $\overline{\mathcal{H}}$ is compact in V.

Bounded hyperbolic components

Let $V \subset \operatorname{rat}_d$ be a subvariety. We say a hyperbolic component $\mathcal{H} \subset V$ is bounded if its closure $\overline{\mathcal{H}}$ is compact in V.

Theorem (Epstein, '00)

Let $\mathcal H$ be a strict type D hyperbolic component in rat_2 . Then $\mathcal H$ is bounded.

Suppose \mathcal{H} is unbounded.

► Milnor '93: rat₂ ≅ C², and a sequence [f_k] is unbounded in rat₂ if and only if at least one multiplier of a fixed point tends to ∞.

- Milnor '93: rat₂ ≅ C², and a sequence [f_k] is unbounded in rat₂ if and only if at least one multiplier of a fixed point tends to ∞.
- Do analytic estimates on the three multipliers to obtain limit dynamics.

- Milnor '93: rat₂ ≅ C², and a sequence [f_k] is unbounded in rat₂ if and only if at least one multiplier of a fixed point tends to ∞.
- Do analytic estimates on the three multipliers to obtain limit dynamics.
- Analyze the limits of the two attracting cycles.

- ► Milnor '93: rat₂ ≅ C², and a sequence [f_k] is unbounded in rat₂ if and only if at least one multiplier of a fixed point tends to ∞.
- Do analytic estimates on the three multipliers to obtain limit dynamics.
- Analyze the limits of the two attracting cycles.
- Get a contradiction with the limit dynamics.

Suppose \mathcal{H} is unbounded.

- Milnor '93: rat₂ ≅ C², and a sequence [f_k] is unbounded in rat₂ if and only if at least one multiplier of a fixed point tends to ∞.
- Do analytic estimates on the three multipliers to obtain limit dynamics.
- Analyze the limits of the two attracting cycles.
- Get a contradiction with the limit dynamics.

It seems not easy to reproduce this argument for rational maps of higher degree.

► A rational map is *bicritical* if it has exact two critical points.

- A rational map is *bicritical* if it has exact two critical points.
- \blacktriangleright By conjugating so that the two critical points are at 0 and ∞ and a fixed point is at 1.

$$\mathcal{F} := \left\{ \frac{\alpha z^d + \beta}{\gamma z^d + \delta} : \alpha \delta - \beta \gamma = 1, \alpha + \beta = \gamma + \delta \right\} \subset \operatorname{Rat}_d.$$

- ► A rational map is *bicritical* if it has exact two critical points.
- \blacktriangleright By conjugating so that the two critical points are at 0 and ∞ and a fixed point is at 1.

$$\mathcal{F} := \left\{ \frac{\alpha z^d + \beta}{\gamma z^d + \delta} : \alpha \delta - \beta \gamma = 1, \alpha + \beta = \gamma + \delta \right\} \subset \operatorname{Rat}_d.$$

• Choose suitable coordinates so that $\mathcal{F} = \mathbb{C}^2 - \{2 \text{ lines}\} \subset \mathbb{C}^2 \subset \mathbb{P}^2.$

- A rational map is *bicritical* if it has exact two critical points.
- \blacktriangleright By conjugating so that the two critical points are at 0 and ∞ and a fixed point is at 1.

$$\mathcal{F} := \left\{ \frac{\alpha z^d + \beta}{\gamma z^d + \delta} : \alpha \delta - \beta \gamma = 1, \alpha + \beta = \gamma + \delta \right\} \subset \operatorname{Rat}_d.$$

- Choose suitable coordinates so that $\mathcal{F} = \mathbb{C}^2 \{2 \text{ lines}\} \subset \mathbb{C}^2 \subset \mathbb{P}^2.$
- Let \mathcal{M}_d be the moduli space of bicritical rational maps of degree d. Then a hyperbolic component $\mathcal{H} \subset \mathcal{M}_d$ lifts to a hyperbolic component $\widetilde{\mathcal{H}} \subset \mathcal{F}$.

Main Result

Theorem (N.-Pilgrim)

Let $\mathcal{H} \subset \mathcal{M}_d$ be a strict type D hyperbolic component. Then \mathcal{H} is bounded in \mathcal{M}_d .

Accessibility of ideal points:

Accessibility of ideal points:

• The lift $\widetilde{\mathcal{H}}$ of \mathcal{H} is semi-algebraic (Milnor '14).

Accessibility of ideal points:

- The lift $\widetilde{\mathcal{H}}$ of \mathcal{H} is semi-algebraic (Milnor '14).
- Curve Section Lemma \Rightarrow any boundary point of $\widetilde{\mathcal{H}}$ in \mathbb{P}^2 can be approached by a sequence from a holomorphic family.

Accessibility of ideal points:

- The lift $\widetilde{\mathcal{H}}$ of \mathcal{H} is semi-algebraic (Milnor '14).
- ► Curve Section Lemma ⇒ any boundary point of H̃ in P² can be approached by a sequence from a holomorphic family.

In summary, if \mathcal{H} is unbounded, we can find a holomorphic family $\{f_t\}_{t\in\mathbb{D}^*}\subset\mathcal{F}$ such that for some $t_k\to 0$, $f_{t_k}\in\widetilde{\mathcal{H}}$ and $[f_{t_k}]\to\infty$ in rat_d .

Accessibility of ideal points:

- The lift $\widetilde{\mathcal{H}}$ of \mathcal{H} is semi-algebraic (Milnor '14).
- Curve Section Lemma \Rightarrow any boundary point of $\widetilde{\mathcal{H}}$ in \mathbb{P}^2 can be approached by a sequence from a holomorphic family.

In summary, if \mathcal{H} is unbounded, we can find a holomorphic family $\{f_t\}_{t\in\mathbb{D}^*}\subset\mathcal{F}$ such that for some $t_k\to 0$, $f_{t_k}\in\widetilde{\mathcal{H}}$ and $[f_{t_k}]\to\infty$ in rat_d .

From now on, we assume \mathcal{H} is unbound and consider the family $\{f_t\}$.

Induced map on Berkovich space (following Kiwi '15):

Induced map on Berkovich space (following Kiwi '15):

• The holomorphic family $\{f_t\}$ induces a rational map

$$\mathbf{f}(z) \in \mathbb{C}((t))(z) \subset \mathbb{C}\{\{t\}\}(z) \subset \mathbb{L}(z),$$

where $\mathbb{C}((t))$ is the field of Laurent series, $\mathbb{C}\{\{t\}\}\$ is the field of Puiseux series, and \mathbb{L} is the completion of $\mathbb{C}\{\{t\}\}\$ w.r.t the natural non-Archimedean absolute value.

Induced map on Berkovich space (following Kiwi '15):

• The holomorphic family $\{f_t\}$ induces a rational map

$$\mathbf{f}(z) \in \mathbb{C}((t))(z) \subset \mathbb{C}\{\{t\}\}(z) \subset \mathbb{L}(z),$$

where $\mathbb{C}((t))$ is the field of Laurent series, $\mathbb{C}\{\{t\}\}$ is the field of Puiseux series, and \mathbb{L} is the completion of $\mathbb{C}\{\{t\}\}$ w.r.t the natural non-Archimedean absolute value.

► The map f extends to an endomorphism on Berkovich space P¹ over L.

(The Berkovich space \mathbf{P}^1 is a compact, Hausdorff, uniquely path-connected topological space with tree structure.)

Figure 1: The Berkovich space ${\bf P}^1$ (see book "Berkovich Spaces and Applications")

Berkovich dynamics of f (bicritical rational map. The quadratic case was done by Kiwi '14):

Berkovich dynamics of f (bicritical rational map. The quadratic case was done by Kiwi '14):

► The two cycles (*z_t*) and (*w_t*) of *f_t* induce two non-repelling cycles (*z*) and (*w*) of *f*.

Berkovich dynamics of \mathbf{f} (bicritical rational map. The quadratic case was done by Kiwi '14):

- ► The two cycles (*z_t*) and (*w_t*) of *f_t* induce two non-repelling cycles (*z*) and (*w*) of *f*.
- ► It follows that f has a repelling q-cycle for some q ≥ 2 where the reduction G of f^q is a degree d bicritical rational map with a multiple fixed point ẑ.

Berkovich dynamics of f (bicritical rational map. The quadratic case was done by Kiwi '14):

- ► The two cycles (*z_t*) and (*w_t*) of *f_t* induce two non-repelling cycles (*z*) and (*w*) of *f*.
- ► It follows that f has a repelling q-cycle for some q ≥ 2 where the reduction G of f^q is a degree d bicritical rational map with a multiple fixed point 2.
- ► The limit of the cycle (*z_t*) (resp. of (*w_t*)) is either {*ẑ*}, contains a cycle disjoint from *2̂*, or contains a preperiodic critical point that iterates under *G* to *2̂*.

Contradiction:

Contradiction:

Applying

- an arithmetic result of Rivera-Letelier: number of fixed points in a Berkovich Fatou component.
- Epstein's refined version of the Fatou-Shishikura Inequality: relations on the numbers of critical points and non-repelling cycles.

Contradiction:

Applying

- an arithmetic result of Rivera-Letelier: number of fixed points in a Berkovich Fatou component.
- Epstein's refined version of the Fatou-Shishikura Inequality: relations on the numbers of critical points and non-repelling cycles.

We derive an over-determined set of constraints on the critical dynamics of G.

Thank you.