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Definitions

I A complex rational map f : P1 → P1 is hyperbolic if each
critical point converges under iteration to an attracting cycle.

I The set of hyperbolic rational maps of degree d ≥ 2 is an open
set in the space Ratd of degree d rationals maps. It descends
an open set in the muduli space ratd := Ratd/Aut(P1).

I Each component of the set of hyperbolic maps is called a
hyperbolic component.

I type D hyperbolic component: each map has maximal number
of disjoint attracting cycles.
strict type D hyperbolic component: type D + each
attracting cycle has period at least 2.
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Bounded hyperbolic components

Let V ⊂ ratd be a subvariety. We say a hyperbolic component
H ⊂ V is bounded if its closure H is compact in V .

Theorem (Epstein, ’00)

Let H be a strict type D hyperbolic component in rat2. Then H is
bounded.
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Epstein’s argument

Suppose H is unbounded.

I Milnor ’93: rat2 ∼= C2, and a sequence [fk ] is unbounded in
rat2 if and only if at least one multiplier of a fixed point tends
to ∞.

I Do analytic estimates on the three multipliers to obtain limit
dynamics.

I Analyze the limits of the two attracting cycles.

I Get a contradiction with the limit dynamics.

It seems not easy to reproduce this argument for rational maps of
higher degree.
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Bicritical Rational Maps

I A rational map is bicritical if it has exact two critical points.

I By conjugating so that the two critical points are at 0 and ∞
and a fixed point is at 1.

F :=

{
αzd + β

γzd + δ
: αδ − βγ = 1, α + β = γ + δ

}
⊂ Ratd .

I Choose suitable coordinates so that
F = C2 − {2 lines} ⊂ C2 ⊂ P2.

I Let Md be the moduli space of bicritical rational maps of
degree d . Then a hyperbolic component H ⊂Md lifts to a
hyperbolic component H̃ ⊂ F .
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Main Result

Theorem (N.-Pilgrim)

Let H ⊂Md be a strict type D hyperbolic component. Then H is
bounded inMd .



Sketch of proof

Accessibility of ideal points:

I The lift H̃ of H is semi-algebraic (Milnor ’14).

I Curve Section Lemma ⇒ any boundary point of H̃ in P2 can
be approached by a sequence from a holomorphic family.

In summary, if H is unbounded, we can find a holomorphic family
{ft}t∈D∗ ⊂ F such that for some tk → 0, ftk ∈ H̃ and [ftk ]→∞ in
ratd .
From now on, we assume H is unbound and consider the family
{ft}.
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Sketch of proof (cont.)

Induced map on Berkovich space (following Kiwi ’15):

I The holomorphic family {ft} induces a rational map

f(z) ∈ C((t))(z) ⊂ C{{t}}(z) ⊂ L(z),

where C((t)) is the field of Laurent series, C{{t}} is the field
of Puiseux series, and L is the completion of C{{t}} w.r.t the
natural non-Archimedean absolute value.

I The map f extends to an endomorphism on Berkovich space
P1 over L.
(The Berkovich space P1 is a compact, Hausdorff, uniquely
path-connected topological space with tree structure.)
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Sketch of proof (cont.)

Figure 1: The Berkovich space P1 (see book “Berkovich Spaces and
Applications”)



Sketch of proof (cont.)

Berkovich dynamics of f (bicritical rational map. The quadratic
case was done by Kiwi ’14):

I The two cycles 〈zt〉 and 〈wt〉 of ft induce two non-repelling
cycles 〈z〉 and 〈w〉 of f.

I It follows that f has a repelling q-cycle for some q ≥ 2 where
the reduction G of fq is a degree d bicritical rational map
with a multiple fixed point ẑ .

I The limit of the cycle 〈zt〉 ( resp. of 〈wt〉) is either {ẑ},
contains a cycle disjoint from ẑ , or contains a preperiodic
critical point that iterates under G to ẑ .
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Sketch of proof (cont.)

Contradiction:

Applying

I an arithmetic result of Rivera-Letelier: number of fixed points
in a Berkovich Fatou component.

I Epstein’s refined version of the Fatou-Shishikura Inequality:
relations on the numbers of critical points and non-repelling
cycles.

We derive an over-determined set of constraints on the critical
dynamics of G .
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Thank you.


