Fixed points of post-critically algebraic endomorphisms

Van Tu LE Institute de Mathématiques de Toulouse

March 25, 2019

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let f be an endomorphism of \mathbb{CP}^1 . The map f is called *post-critically* finite (PCF) if every critical point has finite forward orbit

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let f be an endomorphism of \mathbb{CP}^1 . The map f is called *post-critically finite* (PCF) if every critical point has finite forward orbit

Let C_f be the set of critical points, then f is PCF if the post-critical set $PC(f) = \bigcup_{j \ge 1} f^{\circ j}(C_f)$ is a finite set.

Let f be an endomorphism of \mathbb{CP}^1 . The map f is called *post-critically finite* (PCF) if every critical point has finite forward orbit

Let C_f be the set of critical points, then f is PCF if the post-critical set $PC(f) = \bigcup_{j \ge 1} f^{\circ j}(C_f)$ is a finite set.

Examples

$$f(z) = z^2, f(z) = z^2 - 2, f(z) = z^2 + i$$

Let f be an endomorphism of \mathbb{CP}^1 . The map f is called *post-critically finite* (PCF) if every critical point has finite forward orbit

Let C_f be the set of critical points, then f is PCF if the post-critical set $PC(f) = \bigcup_{j \ge 1} f^{\circ j}(C_f)$ is a finite set.

Examples

$$f(z) = z^2, f(z) = z^2 - 2, f(z) = z^2 + i$$

The eigenvalue of $D_z f$ is called the eigenvalue of f at z and we denote this value by λ_z .

$f(z) = z^2$

Critical portrait:
$$0 \longrightarrow \infty$$

 $PC(f) = \{0, \infty\}$. $Fix(f) = \{0, 1, \infty\}$. $\lambda_0 = \lambda_\infty = 0, \lambda_1 = 2$.

$f(z) = z^2$

Critical portrait:
$$0 \longrightarrow \infty$$

 $PC(f) = \{0, \infty\}$. $Fix(f) = \{0, 1, \infty\}$. $\lambda_0 = \lambda_\infty = 0, \lambda_1 = 2$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$f(z) = z^2 + i$

Critical portrait:
$$0 \longrightarrow i \longrightarrow -1 + i \infty$$

 $PC(f) = \{i, -1 + i, \infty\}$. $Fix(f) = \{\frac{1 \pm \sqrt{1-4i}}{2}, \infty\}$
 $\lambda_{\infty} = 0, \lambda_{\frac{1 \pm \sqrt{1-4i}}{2}} = 1 \pm \sqrt{1-4i}$

$f(z) = z^2$

Critical portrait:
$$0 \longrightarrow \infty$$

 $PC(f) = \{0, \infty\}$. $Fix(f) = \{0, 1, \infty\}$. $\lambda_0 = \lambda_\infty = 0, \lambda_1 = 2$.

$\overline{f(z)} = \overline{z^2} + i$

Critical portrait:
$$0 \longrightarrow i \longrightarrow -1 + i \infty$$

 $PC(f) = \{i, -1 + i, \infty\}$. $Fix(f) = \{\frac{1 \pm \sqrt{1-4i}}{2}, \infty\}$
 $\lambda_{\infty} = 0, \lambda_{\frac{1 \pm \sqrt{1-4i}}{2}} = 1 \pm \sqrt{1-4i}$

Theorem

Let f be a PCF endomorphism of \mathbb{CP}^1 and let z be a fixed point of f. Then either $\lambda_z = 0$ or $|\lambda_z| > 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Towards higher dimension

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

$$PC(f) = \bigcup_{j\geq 1} f^{\circ j}(C_f).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$PC(f) = \bigcup_{j \ge 1} f^{\circ j}(C_f).$$

Definition

An endomorphism f of \mathbb{CP}^n is called a *post-critically algebraic* (PCA) if PC(f) is an algebraic set of codim 1 in \mathbb{CP}^n .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$$PC(f) = \bigcup_{j\geq 1} f^{\circ j}(C_f).$$

Definition

An endomorphism f of \mathbb{CP}^n is called a *post-critically algebraic* (PCA) if PC(f) is an algebraic set of codim 1 in \mathbb{CP}^n .

Let z_0 be a fixed point of f and let λ be an eigenvalue of $D_{z_0}f$.

$$PC(f) = \bigcup_{j \ge 1} f^{\circ j}(C_f).$$

Definition

An endomorphism f of \mathbb{CP}^n is called a *post-critically algebraic* (PCA) if PC(f) is an algebraic set of codim 1 in \mathbb{CP}^n .

Let z_0 be a fixed point of f and let λ be an eigenvalue of $D_{z_0}f$.

Question

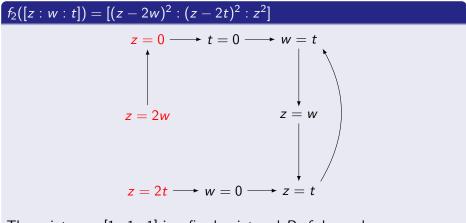
Can we conclude that either $\lambda = 0$ or $|\lambda| > 1$?

$f_1([z_0:\ldots:z_n]) = [z_0^d:\ldots:z_n^d], d \ge 2$

$$PC(f) = \bigcup_{j=1}^{n} \{ [z_0 : \ldots : z_n] | z_j = 0 \}$$

Fix(f) = {[$\iota_0 : \ldots : \iota_n$]| $\iota_j \in \{0, 1\}$ }. The eigenvalues of $D_{z_0}f$ at a fixed point z_0 are 0 and $d \ge 2$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The point $z_0 = [1:1:1]$ is a fixed point and $D_{z_0}f_2$ has only one eigenvalue -4 of multiplicities 2.

Let f be a PCA endomorphism of \mathbb{CP}^n of degree $d \ge 2$, let z_0 be a fixed point of f and let λ be an eigenvalue of $D_{z_0}f$. If $z_0 \notin PC(f)$ then $|\lambda| > 1$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Let f be a PCA endomorphism of \mathbb{CP}^n of degree $d \ge 2$, let z_0 be a fixed point of f and let λ be an eigenvalue of $D_{z_0}f$. If $z_0 \notin PC(f)$ then $|\lambda| > 1$.

Theorem (L. ,2019)

Let f be a PCA endomorphism of \mathbb{CP}^2 of degree $d \ge 2$ and let z_0 be a fixed point of f. Let λ be an eigenvalue of $D_{z_0}f$. Then either $\lambda = 0$ or $|\lambda| > 1$.

Conjecture

Let f be a PCA endomorphism of \mathbb{CP}^n of degree $d \ge 2$. Let z_0 be a fixed point of f and let λ be an eigenvalue of $D_{z_0}f$. Then either $\lambda = 0$ or $|\lambda| > 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjecture

Let f be a PCA endomorphism of \mathbb{CP}^n of degree $d \ge 2$. Let z_0 be a fixed point of f and let λ be an eigenvalue of $D_{z_0}f$. Then either $\lambda = 0$ or $|\lambda| > 1$.

Conjecture is proved in dimension 2!!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Fornæss and Sibony (1994) : The complement of $\overline{PC(f)}$ in \mathbb{CP}^n is Kobayashi hyperbolic and hyperbolically embedded.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fornæss and Sibony (1994) : The complement of $\overline{PC(f)}$ in \mathbb{CP}^n is Kobayashi hyperbolic and hyperbolically embedded.

Jonsson (1998): The irreducible components of the critical locus are preperiodic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fornæss and Sibony (1994) : The complement of $\overline{PC(f)}$ in \mathbb{CP}^n is Kobayashi hyperbolic and hyperbolically embedded.

Jonsson (1998): The irreducible components of the critical locus are preperiodic.

Astorg (2018): The irreducible components of the post-critical set are weakly transverse.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let f be a PCA endomorphism of \mathbb{CP}^2 of degree $d \ge 2$ and let z_0 be a fixed point of f. Let λ be an eigenvalue of $D_{z_0}f$. Then either $\lambda = 0$ or $|\lambda| > 1$.

Let f be a PCA endomorphism of \mathbb{CP}^2 of degree $d \ge 2$ and let z_0 be a fixed point of f. Let λ be an eigenvalue of $D_{z_0}f$. Then either $\lambda = 0$ or $|\lambda| > 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Main cases

Let f be a PCA endomorphism of \mathbb{CP}^2 of degree $d \ge 2$ and let z_0 be a fixed point of f. Let λ be an eigenvalue of $D_{z_0}f$. Then either $\lambda = 0$ or $|\lambda| > 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main cases

• The point z_0 is outside PC(f).

Let f be a PCA endomorphism of \mathbb{CP}^2 of degree $d \ge 2$ and let z_0 be a fixed point of f. Let λ be an eigenvalue of $D_{z_0}f$. Then either $\lambda = 0$ or $|\lambda| > 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main cases

- The point z_0 is outside PC(f).
- The point z_0 is inside PC(f).

Let f be a PCA endomorphism of \mathbb{CP}^2 of degree $d \ge 2$ and let z_0 be a fixed point of f. Let λ be an eigenvalue of $D_{z_0}f$. Then either $\lambda = 0$ or $|\lambda| > 1$.

Main cases

- The point z_0 is outside PC(f).
- The point z_0 is inside PC(f).
 - The point z_0 is the regular point of PC(f).
 - The point z_0 is the singular point of PC(f).

Let f be a PCA endomorphism, z_0 be a fixed point of f and λ be an eigenvalue of f at z_0 . Denote by $X = \mathbb{CP}^2 \setminus PC(f)$ the complement of PC(f) in \mathbb{CP}^2 .

Let f be a PCA endomorphism, z_0 be a fixed point of f and λ be an eigenvalue of f at z_0 . Denote by $X = \mathbb{CP}^2 \setminus PC(f)$ the complement of PC(f) in \mathbb{CP}^2 .

• We consider the universal covering $\pi: \tilde{X} \to X$ of X.

Let f be a PCA endomorphism, z_0 be a fixed point of f and λ be an eigenvalue of f at z_0 . Denote by $X = \mathbb{CP}^2 \setminus PC(f)$ the complement of PC(f) in \mathbb{CP}^2 .

- We consider the universal covering $\pi: \tilde{X} \to X$ of X.
- We construct a holomorphic map $g: ilde{X} o ilde{X}$ fixing a point w_0 such that

$$\begin{array}{c|c} (\tilde{X}, w_0) & \stackrel{g}{\longleftarrow} (\tilde{X}, w_0) \\ \pi & & & \\ \pi & & & \\ (X, z_0) & \stackrel{f}{\longrightarrow} (X, z_0) \end{array}$$

Let f be a PCA endomorphism, z_0 be a fixed point of f and λ be an eigenvalue of f at z_0 . Denote by $X = \mathbb{CP}^2 \setminus PC(f)$ the complement of PC(f) in \mathbb{CP}^2 .

- We consider the universal covering $\pi: \tilde{X} \to X$ of X.
- We construct a holomorphic map $g: ilde{X} o ilde{X}$ fixing a point w_0 such that

 We prove that {g^{oj}}_j is normal and we use that to construct a center manifold M of g at w₀.

Let f be a PCA endomorphism, z_0 be a fixed point of f and λ be an eigenvalue of f at z_0 . Denote by $X = \mathbb{CP}^2 \setminus PC(f)$ the complement of PC(f) in \mathbb{CP}^2 .

- We consider the universal covering $\pi: \tilde{X} \to X$ of X.
- We construct a holomorphic map $g: \tilde{X} \to \tilde{X}$ fixing a point w_0 such that

$$\begin{array}{c|c} (\tilde{X}, w_0) & \stackrel{g}{\longleftarrow} (\tilde{X}, w_0) \\ \pi & & & \\ \pi & & & \\ (X, z_0) & \stackrel{f}{\longrightarrow} (X, z_0) \end{array}$$

- We prove that {g^{oj}}_j is normal and we use that to construct a center manifold M of g at w₀.
- We prove that g|_M is linearizable and use the algebraicity of PC(f) to deduce a contradiction.

Let f be a PCA endomorphism, z_0 be a fixed point of f and λ be an eigenvalue of f at z_0 . Denote by $X = \mathbb{CP}^2 \setminus PC(f)$ the complement of PC(f) in \mathbb{CP}^2 .

- We consider the universal covering $\pi: \tilde{X} \to X$ of X.
- We construct a holomorphic map $g: \tilde{X} \to \tilde{X}$ fixing a point w_0 such that

$$\begin{array}{c|c} (\tilde{X}, w_0) & \stackrel{g}{\longleftarrow} (\tilde{X}, w_0) \\ \pi & & & \\ \pi & & & \\ (X, z_0) & \stackrel{f}{\longrightarrow} (X, z_0) \end{array}$$

- We prove that {g^{oj}}_j is normal and we use that to construct a center manifold M of g at w₀.
- We prove that g|_M is linearizable and use the algebraicity of PC(f) to deduce a contradiction.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A local situation

Let Γ be a singular germ of of curve of \mathbb{C}^2 at **0**. Denote by m, n the first two Puiseux characteristics of Γ . They are analytic invariants of Γ .

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ●

A local situation

Let Γ be a singular germ of of curve of \mathbb{C}^2 at **0**. Denote by m, n the first two Puiseux characteristics of Γ . They are analytic invariants of Γ . Let $f : (\mathbb{C}^2, \mathbf{0}) \to (\mathbb{C}^2, \mathbf{0})$ be a finite holomorphic germ fixing Γ . Denote by λ the eigenvalue of a holomorphic germ $\hat{f} : (\mathbb{C}, 0) \to (\mathbb{C}, 0)$ which is uniquely determined by f and Γ .

A local situation

Let Γ be a singular germ of of curve of \mathbb{C}^2 at **0**. Denote by m, n the first two Puiseux characteristics of Γ . They are analytic invariants of Γ . Let $f : (\mathbb{C}^2, \mathbf{0}) \to (\mathbb{C}^2, \mathbf{0})$ be a finite holomorphic germ fixing Γ . Denote by λ the eigenvalue of a holomorphic germ $\hat{f} : (\mathbb{C}, \mathbf{0}) \to (\mathbb{C}, \mathbf{0})$ which is uniquely determined by f and Γ . Then $\sum_{n=1}^{\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$

Then λ^m, λ^n are eigenvalues of $D_0 f$.

A local situation

Let Γ be a singular germ of of curve of \mathbb{C}^2 at **0**. Denote by m, n the first two Puiseux characteristics of Γ . They are analytic invariants of Γ . Let $f : (\mathbb{C}^2, \mathbf{0}) \to (\mathbb{C}^2, \mathbf{0})$ be a finite holomorphic germ fixing Γ . Denote by λ the eigenvalue of a holomorphic germ $\hat{f} : (\mathbb{C}, 0) \to (\mathbb{C}, 0)$ which is uniquely determined by f and Γ . Then λ^m, λ^n are eigenvalues of $D_{\mathbf{0}}f$.

By study the restriction of a PCA endomorphism on an invariant curve and using the result of PCF endomorphisms, we can prove that either $\lambda = 0$ or $|\lambda| > 1$.

Thank you for your attention!

