
Semigroups of hyperbolic isometries and their
parameter spaces

Matthew Jacques

Matthew Jacques (The Open University) 28th March 2019 0 / 13



Möbius semigroups

Möbius transformations and hyperbolic geometry

• We consider the group M of Möbius transformations acting as the

conformal automorphisms of the unit disc D.

• When endowed with the supremum metric, the group M becomes

both a complete metric space and a topological group.

• When D is equipped with the hyperbolic metric �, the group M is

exactly the group of orientation-preserving isometries of (D; �), and

the unit circle S1 is its ideal boundary.
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Möbius semigroups
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Möbius semigroups
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Möbius semigroups

Limit sets

If S is a semigroup, we define its forward limit set, denoted Λ+(S) to be

the set of accumulation points of S(0) on S1.

We define S�1 =
�
g�1 j g 2 S

	
.

The backward limit set of S , denoted Λ�(S) is the set of accumulation

points of S�1(0) on S1.

Theorem (Fried, Marotta, Stankewitz, 2012)

If S is not elementary, then Λ+(S) is forward invariant:

f (Λ+(S)) � Λ+(S) for all f 2 S . Moreover Λ+(S) is the closure of the

attracting fixed points of S .

Examples: Fuchsian groups, S conjugate to
D
z 7! 1

3z ; z 7!
1
3z + 2

3

E
.
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Möbius semigroups

Λ+(S) and Λ�(S) where S =

D
z 7! a

1+z
; z 7! a�1+2ia1=2

1+z
; z 7! 1

4(1+z)

E
; a = �0:1 + 0:7i :
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Möbius semigroups

Relationship with other dynamical systems

Theorem (B. Aebischer, 1990)

If S is a semigroup, then Λ�(S) is the set of points on S1 upon which S is

not a normal family.

Similarly, Λ+(S) is the set of points on S1 upon which S�1 is not a normal

family.

The Julia set J(f ) of a rational function f acting on bC is the subset of bC
upon which ff n j n 2 Ng is not a normal family.

The Julia set J(f ) of a transcendental entire function f acting on C is the

subset of C upon which ff n j n 2 Ng is not a normal family.

The limit set Λ(G ) of a group G of complex Möbius transformations is the

subset of bC upon which G is not a normal family.
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subset of bC upon which G is not a normal family.

Matthew Jacques (The Open University) 28th March 2019 5 / 13
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subset of bC upon which G is not a normal family.

Matthew Jacques (The Open University) 28th March 2019 5 / 13



Parameter space

Parameter spaces of dynamical systems

The parameter spaces of dynamical systems are often high-dimensional

and difficult to investigate.

An exception is the well-known family of polynomials fc(z) = z2 + c with

one complex parameter.

The celebrated Mandelbrot set is the collection of those c 2 C such that

J(fc) is connected.
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Parameter space

Parameter spaces of semigroups contained inM

Let us take an integer d > 1 and endow Md , the set of d-tuples of

elements in M, with the product metric inherited from M.

We shall parametrise the collection of semigroups on d generators by

points in Md - we associate each d-tuple of elements from M with the

semigroup generated by its ordinates.

For any x = (x1; : : : ; xd) in Md we define S(x) as the semigroup

generated by the set fx1; : : : ; xdg.

Our goal is to classify points in parameter space according to some kind of

dynamical behaviour.

To do this we shall use composition sequences and their rates of escape.

Matthew Jacques (The Open University) 28th March 2019 7 / 13
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Parameter space

Composition sequences

For clarity, let us take d = 2 and suppose x = (g ; h).

A composition sequence generated by x is a sequence (Fn) of elements in

M where

Fn = f1 � � � � � fn

where fi 2 fg ; hg for each i .

Consider the orbit of 0 under the composition sequence (Fn).

We have

�(Fn+1(0);Fn(0)) = �(fn+1(0); 0) 6 max f�(g(0); 0); �(h(0); 0)g :

So by the triangle inequality we have

�(Fn(0); 0) 6 nmax f�(g(0); 0); �(h(0); 0)g :

Matthew Jacques (The Open University) 28th March 2019 8 / 13
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Parameter space

Definition

The hyperbolic locus is the set

H =
n
x 2Md j �(x) > 0

o
:

We define the elliptic locus as the set

E =
n
x 2Md j S(x) contains an elliptic map

o
:

The sets H and E are, in a sense, two extremes. Nevertheless, most

semigroups lie in one of these sets.

Theorem (Yoccoz, 2004)

Both H and E are open in Md . Moreover, E = Md n H.

Matthew Jacques (The Open University) 28th March 2019 9 / 13



Parameter space

Definition

The hyperbolic locus is the set

H =
n
x 2Md j �(x) > 0

o
:

We define the elliptic locus as the set

E =
n
x 2Md j S(x) contains an elliptic map

o
:

The sets H and E are, in a sense, two extremes. Nevertheless, most

semigroups lie in one of these sets.

Theorem (Yoccoz, 2004)

Both H and E are open in Md . Moreover, E = Md n H.

Matthew Jacques (The Open University) 28th March 2019 9 / 13



Parameter space

Definition

The hyperbolic locus is the set

H =
n
x 2Md j �(x) > 0

o
:

We define the elliptic locus as the set

E =
n
x 2Md j S(x) contains an elliptic map

o
:

The sets H and E are, in a sense, two extremes. Nevertheless, most

semigroups lie in one of these sets.

Theorem (Yoccoz, 2004)

Both H and E are open in Md . Moreover, E = Md n H.

Matthew Jacques (The Open University) 28th March 2019 9 / 13



Parameter space

Definition

The hyperbolic locus is the set

H =
n
x 2Md j �(x) > 0

o
:

We define the elliptic locus as the set

E =
n
x 2Md j S(x) contains an elliptic map

o
:

The sets H and E are, in a sense, two extremes. Nevertheless, most

semigroups lie in one of these sets.

Theorem (Yoccoz, 2004)

Both H and E are open in Md . Moreover, E = Md n H.

Matthew Jacques (The Open University) 28th March 2019 9 / 13



Parameter space

Question 1 (Avila, Bochi, Yoccoz, 2010)

We have E = Md n H, is it true that H = Md n E?

Theorem (Avila, Bochi, Yoccoz, 2010)

For d=2 we have H = Md n E .

For each d > 2 the answer to Question 1 is no1, we can find points that lie

in Md n E but not H.

All our counter examples to Question 1 correspond to discrete groups, and

so contain the identity.

Question 2

Is it true that H = Md n EI ?

1M. Jacques and I. Short, Dynamics of hyperbolic isometries,

http://arxiv.org/abs/1609.00576.
Matthew Jacques (The Open University) 28th March 2019 10 / 13
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Parameter space

Question 3 (Avila, Bochi, Yoccoz, 2010)

Does every point on @H lie on the boundary of a component of H ?

Let C be the set of non-empty compact subsets of S1 endowed with the

Hausdorff metric.

For any x = (x1; : : : ; xd) in Md we define

• Λ+ : Md ! C as the function given by x 7! Λ+(S(x)); and similarly

• Λ� : Md ! C as the function x 7! Λ�(S(x)).

Theorem (J. 2018)

The functions Λ+ and Λ� are continuous on H.

The hyperbolic locus is exactly the set of those x 2Md for which

(i) the identity element does not lie in the closure of S(x), and

(ii) Λ+(x) \ Λ�(x) = ;.

(Animation)

Matthew Jacques (The Open University) 28th March 2019 11 / 13
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Let C be the set of non-empty compact subsets of S1 endowed with the

Hausdorff metric.
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Parameter space

Question 3 (Avila, Bochi, Yoccoz, 2010)

Does every point on @H lie on the boundary of a component of H ?

Let y = (f ; g ; h; q) 2M4, where f ; h; q generate (as a group) a Schottky

group, and g = fh�1f �1.

f

h

q

g

For each x 2Md we define

�(x) = no. of complementary components of Λ�(x) that meet Λ+(x):

Then �(y) = +1.
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Thank you for your attention!
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