Critical points of the multiplier map

Igors Gorbovickis

Jacobs University Bremen

March 25, 2019

Igors Gorbovickis Critical points of the multiplier map

< (T) >

∢ ≣ ▶

Theorem (G. 2014): The multipliers of any n-1 distinct periodic orbits, considered as algebraic maps on the space of degree n polynomials, are locally independent at a *generic* polynomial f.

A (10) × (10) × (10) ×

The multiplier map on the space $\operatorname{Poly}_2 = \{z^2 + c \mid c \in \mathbb{C}\}$

For any $k \in \mathbb{N}$,

- ▶ let Poly^k₂ be the set of all pairs (f_c, O), such that f_c ∈ Poly₂ and O is a periodic orbit of f_c of period k.
- The multiplier map $\rho_k \colon \operatorname{Poly}_2^k \to \mathbb{C}$ is defined by

 $\rho_k(f_c, \mathcal{O}) :=$ the multiplier of the periodic orbit \mathcal{O} .

Question: What can we say about the critical points of the maps ρ_k ?

- 同 ト - ヨ ト - ヨ ト

The multiplier map on the space $\operatorname{Poly}_2 = \{z^2 + c \mid c \in \mathbb{C}\}$

For any $k \in \mathbb{N}$.

- ▶ let Poly_2^k be the set of all pairs (f_c, \mathcal{O}) , such that $f_c \in \operatorname{Poly}_2$ and \mathcal{O} is a periodic orbit of f_c of period k.
- The multiplier map $\rho_k \colon \operatorname{Poly}_2^k \to \mathbb{C}$ is defined by

 $\rho_k(f_c, \mathcal{O}) :=$ the multiplier of the periodic orbit \mathcal{O} .

Question: What can we say about the critical points of the maps ρ_k ?

When c = 0, $rac{d
ho_k}{dc}(0,\langle z_0
angle)=-2^k\sum_{i=0}^{\kappa-1}z_0^{-2^{j+1}}.$ 30 $e^{2\pi i/99}$

Table: The list of all $k \leq 30$, for which ρ_k has a critical point at c = 0. $(z_0 \text{ is a corresponding periodic point.})$ イロト イヨト イヨト イヨト 二日

Critical points of the multiplier maps ρ_k

For any $k \in \mathbb{N}$, define

•
$$\sigma_k(f_c, \mathcal{O}) := \frac{d\rho_k}{dc}(f_c, \mathcal{O});$$

X_k := {c ∈ C | σ_k(f_c, O) = 0, for some periodic orbit O}.
 (Points in X_k are counted with multiplicity.)

$$\nu_k := \frac{1}{\# X_k} \sum_{c \in X_k} \delta_c.$$

Theorem (Firsova, G.): The sequence of measures $\{\nu_k\}_{k\in\mathbb{N}}$ converges to μ_{bif} in the weak sense of measures on \mathbb{C} . Theorem (Firsova, G.): For every $k_0 \in \mathbb{N}$ and $c \in X_{k_0} \setminus \mathbb{M}$, there exists a sequence $\{c_k\}_{k=3}^{\infty}$, such that each $c_k \in X_k$ and

$$\lim_{k\to\infty}c_k=c.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

 $\mu_{\rm bif} = \Delta G_{\mathbb{M}},$

where $G_{\mathbb{M}} \colon \mathbb{C} \to [0, +\infty)$ is the Green's function of the Mandelbrot set and Δ is the generalized Laplacian.

・ 回 ト ・ ヨ ト ・ ヨ ト …

 $\mu_{\rm bif} = \Delta G_{\mathbb{M}},$

where $G_{\mathbb{M}} \colon \mathbb{C} \to [0, +\infty)$ is the Green's function of the Mandelbrot set and Δ is the generalized Laplacian.

$$G_{c}(z) = \lim_{n \to +\infty} \max\{2^{-n} \log |f_{c}^{\circ n}(z)|, 0\},\$$

$$G_{\mathbb{M}}(c) = G_{c}(c).$$

Theorem (Brolin 1965): For any $z_0 \in \mathbb{C}$ (possibly avoiding two exceptional values), the points $f_c^{-k}(z_0)$ (counted with multiplicity) equidistribute on the Julia set J_c , as $k \to \infty$.

Theorem (Levin 1989, Bassanelli-Berteloot 2011, Buff-Gauthier 2015): For any $\rho_0 \in \mathbb{C}$, the set of parameters c (counted with multiplicity), such that $\rho_k(f_c, \mathcal{O}) = \rho_0$, for some $(f_c, \mathcal{O}) \in P_k$, equidistributes on the boundary of \mathbb{M} , as $k \to \infty$.

Critical points of the multiplier maps ρ_k

For any $s \in \mathbb{C}$ and any $k \in \mathbb{N}$,

define

 $X_{s,k} := \{ c \in \mathbb{C} \mid \sigma(f_c, \mathcal{O}) = s, \text{ for some periodic orbit } \mathcal{O} \}.$ (Points in $X_{s,k}$ are counted with multiplicity.)

$$\nu_{s,k} := \frac{1}{\# X_{s,k}} \sum_{c \in X_{s,k}} \delta_c.$$

Theorem (Firsova, G.): For every sequence of complex numbers $\{s_k\}_{k\in\mathbb{N}}$, such that

$$\limsup_{k\to+\infty}\frac{1}{k}\log|s_k|\leq \log 2,$$

the sequence of measures $\{\nu_{s_k,k}\}_{k\in\mathbb{N}}$ converges to μ_{bif} in the weak sense of measures on \mathbb{C} .

Step 1: For each measure ν_k , construct a potential (a subharmonic function) $u_k : \mathbb{C} \to [-\infty, +\infty)$, such that

$$\Delta u_k = \nu_k.$$

Step 2: Then convergence $u_k \to G_M$ in L^1_{loc} as $k \to \infty$ implies weak convergence of measures $\nu_k \to \mu_{bif}$.

伺下 イヨト イヨト

Step 1: Potentials

$$ilde{S}_k(c,s) := \prod_{\mathcal{O}|(c,\mathcal{O})\in P_k} (s - \sigma_k(f_c,\mathcal{O}))$$

 $ilde{S}_k$ is a rational map in c with simple poles at primitive parabolic c.

$$C_k(c) := \prod_{ ilde{c} \in ilde{\mathcal{P}}_k} (c - ilde{c}).$$

 $S_k(c,s) = C_k(c)\tilde{S}_k(c,s)$ – polynomials in c and s. Lemma: $S_k(c,0) = 0$, iff c is a critical point of the multiplier map ρ_k .

周 ト イヨ ト イヨ ト 二 ヨ

Step 1: Potentials

$$ilde{\mathcal{S}}_k(c,s) := \prod_{\mathcal{O} \mid (c,\mathcal{O}) \in P_k} (s - \sigma_k(f_c,\mathcal{O}))$$

 \tilde{S}_k is a rational map in c with simple poles at primitive parabolic c.

$$C_k(c) := \prod_{ ilde{c} \in ilde{\mathcal{P}}_k} (c - ilde{c}).$$

 $S_k(c,s) = C_k(c)\tilde{S}_k(c,s)$ – polynomials in c and s. Lemma: $S_k(c,0) = 0$, iff c is a critical point of the multiplier map ρ_k .

For all
$$c \in \mathbb{C}$$
, define
 $u_k(c) := \frac{1}{\deg_c S_k} \log |S_k(c,0)| = \frac{1}{\deg_c S_k} \left[\log |\tilde{S}_k(c,0)| + \log |C_k(c)| \right].$
Then

Λ..

$$\nu_k \equiv \Delta u_k.$$

Lemma (Buff, Gauthier): Any subharmonic function $u \colon \mathbb{C} \to [-\infty, +\infty)$ which coincides with $G_{\mathbb{M}}$ outside \mathbb{M} , coincides with $G_{\mathbb{M}}$ everywhere.

Lemma (Buff, Gauthier): Let $K \subset \mathbb{C}$ be a compact set such that $\mathbb{C} \setminus K$ is connected. Let v be a subharmonic function on \mathbb{C} such that Δv is supported on ∂K and does not charge the boundary of the connected components of the interior of K. Then, any subharmonic function u on \mathbb{C} which coincides with v outside K, coincides with v everywhere.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma (Buff, Gauthier): Any subharmonic function $u \colon \mathbb{C} \to [-\infty, +\infty)$ which coincides with $G_{\mathbb{M}}$ outside \mathbb{M} , coincides with $G_{\mathbb{M}}$ everywhere.

Lemma (Buff, Gauthier): Let $K \subset \mathbb{C}$ be a compact set such that $\mathbb{C} \setminus K$ is connected. Let v be a subharmonic function on \mathbb{C} such that Δv is supported on ∂K and does not charge the boundary of the connected components of the interior of K. Then, any subharmonic function u on \mathbb{C} which coincides with v outside K, coincides with v everywhere.

Corollary: We need to prove $u_k \to G_M$ only outside M.

(日本) (日本) (日本)

Roots of the multiplier maps

 $\mathfrak{c}: \mathbb{C} \setminus \overline{\mathbb{D}} \to \mathbb{C} \setminus \mathbb{M} \quad - \text{ conformal double covering, } \quad \mathfrak{c}(\lambda) := \phi_{\mathbb{M}}^{-1}(\lambda^2)$ $\Omega := \{0, 1\}^{\mathbb{N}}, \qquad \sigma \colon \Omega \to \Omega \quad \text{ is the left shift.}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

Roots of the multiplier maps

$$\begin{split} \mathfrak{c}\colon \mathbb{C}\backslash\overline{\mathbb{D}}\to\mathbb{C}\backslash\mathbb{M} & -\text{ conformal double covering, } \mathfrak{c}(\lambda):=\phi_{\mathbb{M}}^{-1}(\lambda^2)\\ \Omega:=\{0,1\}^{\mathbb{N}}, \quad \sigma\colon\Omega\to\Omega \quad \text{is the left shift.} \end{split}$$
 For any $\lambda\in\mathbb{C}\setminus\overline{\mathbb{D}}$, the map $\psi_\lambda\colon\Omega\to\mathbb{C}$ is

► a homeomorphism between Ω and $J_{\mathfrak{c}(\lambda)}$, conjugating σ to $f_{\mathfrak{c}(\lambda)}$:

$$\psi_{\lambda} \circ \sigma = f_{\mathfrak{c}(\lambda)} \circ \psi_{\lambda}; \tag{1}$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

• $\psi_{\lambda}(\mathbf{w})$ depends analytically on $\lambda \in \mathbb{C} \setminus \overline{\mathbb{D}}$;

 $\mathfrak{c} \colon \mathbb{C} \setminus \overline{\mathbb{D}} \to \mathbb{C} \setminus \mathbb{M} \quad - \text{ conformal double covering, } \quad \mathfrak{c}(\lambda) := \phi_{\mathbb{M}}^{-1}(\lambda^2)$ $\Omega := \{0, 1\}^{\mathbb{N}}, \qquad \sigma \colon \Omega \to \Omega \quad \text{ is the left shift.}$ For any $\lambda \in \mathbb{C} \setminus \overline{\mathbb{D}}$, the map $\psi_{\lambda} \colon \Omega \to \mathbb{C}$ is

• a homeomorphism between Ω and $J_{c(\lambda)}$, conjugating σ to $f_{c(\lambda)}$:

$$\psi_{\lambda} \circ \sigma = f_{\mathfrak{c}(\lambda)} \circ \psi_{\lambda}; \tag{1}$$

• $\psi_{\lambda}(\mathbf{w})$ depends analytically on $\lambda \in \mathbb{C} \setminus \overline{\mathbb{D}}$; For $\lambda \in \mathbb{C} \setminus \overline{\mathbb{D}}$, define

$$g_{k,\mathbf{w}}(\lambda) := \left(2^k \prod_{j=0}^{k-1} \psi_{\lambda}(\sigma^j \mathbf{w})
ight)^{1/k}$$

Motivation: If **w** is k-periodic, then $g_{k,\mathbf{w}}(\lambda)$ is the k-th degree root of the multiplier.

Ergodic Theorem: For a.e. $\mathbf{w} \in \Omega$, the sequence of maps $\{g_{k,\mathbf{w}}\}_{k\in\mathbb{N}}$ converges to 2λ on compact subsets of $\mathbb{C}\setminus\overline{\mathbb{D}}$, as $k\to\infty$.

向下 イヨト イヨト

Ergodic Theorem: For a.e. $\mathbf{w} \in \Omega$, the sequence of maps $\{g_{k,\mathbf{w}}\}_{k\in\mathbb{N}}$ converges to 2λ on compact subsets of $\mathbb{C}\setminus\overline{\mathbb{D}}$, as $k\to\infty$.

$$\Omega_k \subset \Omega$$
 – periodic itineraries of period k.

For any $\mathbf{w} \in \Omega_k$, define

 $g_{\mathbf{w}}(\lambda) := g_{k,\mathbf{w}}(\lambda)$ — the *k*-th degree root of the multiplier.

Theorem: For any $\varepsilon, \delta > 0$ and a compact subset $K \subset \mathbb{C} \setminus \overline{\mathbb{D}}$, there exists $k_0 \in \mathbb{N}$, such that for any $k \ge k_0$, the following holds:

$$\frac{\#\{\mathbf{w}\in\Omega_k\colon \|g_{\mathbf{w}}-2\cdot\mathrm{id}\,\|_{\mathcal{K}}<\delta\}}{\#\Omega_k}>1-\varepsilon.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Recall:
$$u_k(c) := \frac{1}{\deg_c S_k} \left[\log |\tilde{S}_k(c,0)| + \log |C_k(c)| \right].$$

According to Buff-Gauthier, for any $c \in \mathbb{C} \setminus \mathbb{M}$,

$$rac{1}{\deg_c S_k} \log |C_k(c)| o \log |\lambda(c)|, \quad ext{pointwise as } k o \infty.$$

Next

$$rac{1}{\deg_c S_k} \log | ilde{S}_k(c,0)| \sim rac{1}{2^k} \sum_{\mathbf{w} \in \Omega_k} rac{1}{k} \cdot \log \left| rac{d}{dc} ([g_{\mathbf{w}}(\lambda)]^k)
ight| =$$

$$\frac{1}{2^{k}}\sum_{\mathbf{w}\in\Omega_{k}}\frac{1}{k}\left[\log k+(k-1)\log |g_{\mathbf{w}}(\lambda)|+\log |g_{\mathbf{w}}'(\lambda)|+\log \left|\frac{d\lambda}{dc}\right|\right]\rightarrow$$