Rigidity of Newton Dynamics

Kostya Drach

Jacobs University Bremen, Germany

(joint work with Dierk Schleicher)

Topics in Complex Dynamics 2019 University of Barcelona

March 26, 2019

- **Dynamical rigidity:** a holomorphic map *f* is *rigid* if one can distinguish, **in combinatorial terms**, all orbits of *f*.
- **Parameter rigidity:** a family \mathcal{F} of holomorphic maps is *rigid* if any pair of combinatorially equivalent maps in \mathcal{F} are *quasiconformally conjugate* in some neighborhood of their Julia sets.

- **Dynamical rigidity:** a holomorphic map *f* is *rigid* if one can distinguish, in **combinatorial terms**, all orbits of *f*.
- **Parameter rigidity:** a family \mathcal{F} of holomorphic maps is *rigid* if any pair of combinatorially equivalent maps in \mathcal{F} are *quasiconformally conjugate* in some neighborhood of their Julia sets.

Rigidity for polynomials: *Branner–Hubbard, McMullen, Yoccoz, Lyubich, Kozlovski–Shen–van Strien...* Rigidity for rational maps?

- **Dynamical rigidity:** a holomorphic map *f* is *rigid* if one can distinguish, in **combinatorial terms**, all orbits of *f*.
- **Parameter rigidity:** a family \mathcal{F} of holomorphic maps is *rigid* if any pair of combinatorially equivalent maps in \mathcal{F} are *quasiconformally conjugate* in some neighborhood of their Julia sets.

Rigidity for polynomials: *Branner–Hubbard, McMullen, Yoccoz, Lyubich, Kozlovski–Shen–van Strien...* **Rigidity for rational maps?** ~~~~~ We address rigidity question for Newton maps of polynomials of any degree.

- **Dynamical rigidity:** a holomorphic map *f* is *rigid* if one can distinguish, in **combinatorial terms**, all orbits of *f*.
- **Parameter rigidity:** a family \mathcal{F} of holomorphic maps is *rigid* if any pair of combinatorially equivalent maps in \mathcal{F} are *quasiconformally conjugate* in some neighborhood of their Julia sets.

Rigidity for polynomials: *Branner–Hubbard, McMullen, Yoccoz, Lyubich, Kozlovski–Shen–van Strien...* **Rigidity for rational maps?** We address rigidity question for Newton maps of polynomials of any degree.

Take-away general philosophy (Rational Rigidity Principle):

(dynamical version) a rational map is either *rigid*, or it contains an *embedded polynomial dynamics* (excluding flexible examples); (parameter space version) a family of rational maps is *rigid* provided it contains no embedded polynomial dynamics, or this dynamics is embedded in "the same way".

Let $g \colon U \to V$ be holomorphic, $U \subseteq V \subset \widehat{\mathbb{C}}$.

Let $g: U \to V$ be holomorphic, $U \subseteq V \subset \widehat{\mathbb{C}}$.

Definition (A puzzle piece)

A puzzle piece of depth *n* (notation P_n^i) is a closed topological disk s.t.

• $g^k(\partial P_n^i) \cap \mathring{P}_n^i = \emptyset \quad \forall k \ge 0$ (the puzzle is a *nice set*),

Let $g: U \to V$ be holomorphic, $U \subseteq V \subset \widehat{\mathbb{C}}$.

Definition (A puzzle piece)

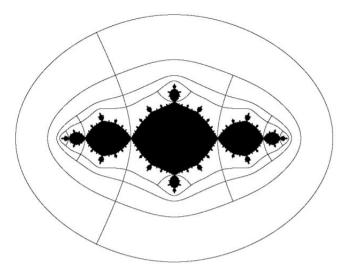
A puzzle piece of depth n (notation P_n^i) is a closed topological disk s.t.

• $g^k(\partial P_n^i) \cap \mathring{P}_n^i = \emptyset \quad \forall k \ge 0$ (the puzzle is a *nice set*),

and the set of all puzzle pieces obey the Markov property, that is

- any two puzzle pieces either nested $(P_n^i \subset P_m^j)$ or have disjoint interiors; in the former case $n \ge m$;
- $g(P_n^i) = P_{n-1}^j$ for some j, and $g \colon \mathring{P}_n^i \to \mathring{P}_{n-1}^j$ is a branched covering.

Yoccoz puzzles for polynomials



Let $g: U \to V$ be holomorphic, $U \subseteq V \subset \widehat{\mathbb{C}}$.

Definition (A puzzle piece)

A **puzzle piece of depth** n (notation P_n^i) is a closed topological disk s.t.

• $g^k(\partial P_n^i) \cap \mathring{P}_n^i = \emptyset \quad \forall k \ge 0$ (the puzzle is a *nice set*),

and the set of all puzzle pieces obey the Markov property, that is

• any two puzzle pieces either nested $(P_n^i \subset P_m^j)$ or have disjoint interiors; in the former case $n \ge m$;

•
$$g(P_n^i) = P_{n-1}^j$$
 for some j and $g \colon \mathring{P}_n^i \to \mathring{P}_{n-1}^j$ is a branched covering.

Non-escaping set: $K(g) := \{z \in U : g^k(z) \in U \forall k > 0\}$ (the filled-in Julia set); the Julia set: $J(g) := \partial K(g)$.

For $x \in K(g)$, let $P_n(x)$ the union of puzzle pieces containing x.

Let $g: U \to V$ be holomorphic, $U \subseteq V \subset \widehat{\mathbb{C}}$.

Definition (A puzzle piece)

A **puzzle piece of depth** n (notation P_n^i) is a closed topological disk s.t.

• $g^k(\partial P_n^i) \cap \mathring{P}_n^i = \emptyset \quad \forall k \ge 0$ (the puzzle is a *nice set*),

and the set of all puzzle pieces obey the Markov property, that is

• any two puzzle pieces either nested $(P_n^i \subset P_m^j)$ or have disjoint interiors; in the former case $n \ge m$;

•
$$g(P_n^i) = P_{n-1}^j$$
 for some j and $g \colon \mathring{P}_n^i \to \mathring{P}_{n-1}^j$ is a branched covering.

Non-escaping set: $K(g) := \{z \in U : g^k(z) \in U \forall k > 0\}$ (the filled-in Julia set); the Julia set: $J(g) := \partial K(g)$.

For $x \in K(g)$, let $P_n(x)$ the union of puzzle pieces containing x. The **fiber** of x is fib(x) := $\bigcap_{n \ge 0} P_n(x)$.

Let $g: U \to V$ be holomorphic, $U \subseteq V \subset \widehat{\mathbb{C}}$.

Definition (A puzzle piece)

A **puzzle piece of depth** n (notation P_n^i) is a closed topological disk s.t.

• $g^k(\partial P_n^i) \cap \mathring{P}_n^i = \emptyset \quad \forall k \ge 0$ (the puzzle is a *nice set*),

and the set of all puzzle pieces obey the Markov property, that is

• any two puzzle pieces either nested $(P_n^i \subset P_m^j)$ or have disjoint interiors; in the former case $n \ge m$;

•
$$g(P_n^i) = P_{n-1}^j$$
 for some j and $g \colon \mathring{P}_n^i \to \mathring{P}_{n-1}^j$ is a branched covering.

Non-escaping set: $K(g) := \{z \in U : g^k(z) \in U \forall k > 0\}$ (the filled-in Julia set); the Julia set: $J(g) := \partial K(g)$.

For $x \in K(g)$, let $P_n(x)$ the union of puzzle pieces containing x.

The fiber of x is $fib(x) := \bigcap_{n \ge 0} P_n(x)$. The fiber of x is trivial if $fib(x) = \{x\}$.

Let $g: U \to V$ be holomorphic, $U \subseteq V \subset \widehat{\mathbb{C}}$.

Definition (A puzzle piece)

A **puzzle piece of depth** n (notation P_n^i) is a closed topological disk s.t.

• $g^k(\partial P_n^i) \cap \mathring{P}_n^i = \emptyset \quad \forall k \ge 0$ (the puzzle is a *nice set*),

and the set of all puzzle pieces obey the Markov property, that is

• any two puzzle pieces either nested $(P_n^i \subset P_m^j)$ or have disjoint interiors; in the former case $n \ge m$;

•
$$g(P_n^i) = P_{n-1}^j$$
 for some j and $g \colon \mathring{P}_n^i \to \mathring{P}_{n-1}^j$ is a branched covering.

Non-escaping set: $K(g) := \{z \in U : g^k(z) \in U \forall k > 0\}$ (the filled-in Julia set); the Julia set: $J(g) := \partial K(g)$.

For $x \in K(g)$, let $P_n(x)$ the union of puzzle pieces containing x.

The fiber of x is $fib(x) := \bigcap_{n \ge 0} P_n(x)$. The fiber of x is trivial if $fib(x) = \{x\}$.

 $\rightarrow fib(x)$ is the set of points with the same itinerary w.r.t. dynamically defined puzzle partition

Let $g: U \to V$ be holomorphic, $U \subseteq V \subset \widehat{\mathbb{C}}$.

Definition (A puzzle piece)

A **puzzle piece of depth** n (notation P_n^i) is a closed topological disk s.t.

• $g^k(\partial P_n^i) \cap \mathring{P}_n^i = \emptyset \quad \forall k \ge 0$ (the puzzle is a *nice set*),

and the set of all puzzle pieces obey the Markov property, that is

• any two puzzle pieces either nested $(P_n^i \subset P_m^j)$ or have disjoint interiors; in the former case $n \ge m$;

•
$$g(P_n^i) = P_{n-1}^j$$
 for some j and $g \colon \mathring{P}_n^i \to \mathring{P}_{n-1}^j$ is a branched covering.

Non-escaping set: $K(g) := \{z \in U : g^k(z) \in U \forall k > 0\}$ (the filled-in Julia set); the Julia set: $J(g) := \partial K(g)$.

For $x \in K(g)$, let $P_n(x)$ the union of puzzle pieces containing x.

The fiber of x is $fib(x) := \bigcap_{n \ge 0} P_n(x)$. The fiber of x is trivial if $fib(x) = \{x\}$.

 \rightarrow fib(x) is the set of points with the same itinerary w.r.t. dynamically defined puzzle partition \rightarrow the fiber consists of points "traveling together"

Let $g: U \to V$ be holomorphic, $U \subseteq V \subset \widehat{\mathbb{C}}$.

Definition (A puzzle piece)

A puzzle piece of depth n (notation P_n^i) is a closed topological disk s.t.

• $g^k(\partial P_n^i) \cap \mathring{P}_n^i = \emptyset \quad \forall k \ge 0$ (the puzzle is a *nice set*),

and the set of all puzzle pieces obey the Markov property, that is

• any two puzzle pieces either nested $(P_n^i \subset P_m^j)$ or have disjoint interiors; in the former case $n \ge m$;

•
$$g(P_n^i) = P_{n-1}^j$$
 for some j and $g \colon \mathring{P}_n^i \to \mathring{P}_{n-1}^j$ is a branched covering.

Non-escaping set: $K(g) := \{z \in U : g^k(z) \in U \forall k > 0\}$ (the filled-in Julia set); the Julia set: $J(g) := \partial K(g)$.

For $x \in K(g)$, let $P_n(x)$ the union of puzzle pieces containing x.

The fiber of x is $fib(x) := \bigcap_{n \ge 0} P_n(x)$. The fiber of x is trivial if $fib(x) = \{x\}$.

 \rightarrow **fib**(**x**) is the set of points with the **same itinerary** w.r.t. dynamically defined puzzle partition \rightarrow the fiber consists of points "traveling together" \rightarrow if the fiber of x is trivial, then the orbit of x is **combinatorially distinguishable** among all other orbits.

Kostya Drach (Jacobs University)

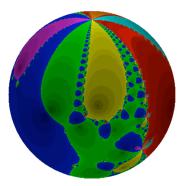
Dynamical Rigidity for Newton maps

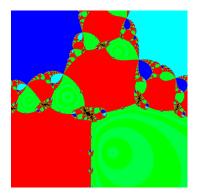
 $p: \mathbb{C} \to \mathbb{C}$ is a complex polynomial. The **Newton map of** p is the rational map $N_p: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ s.t.

$$N_p(z) := z - \frac{p(z)}{p'(z)}.$$

Fixed points in $\widehat{\mathbb{C}}$: $N_p(z) = z \Leftrightarrow z = \infty$ (repelling) or z is a root of p (attracting) (hence each of the roots has its own basin of attraction).

Newton dynamical plane: examples





 $p: \mathbb{C} \to \mathbb{C}$ is a complex polynomial. The **Newton map of** p is the rational map $N_p: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ s.t.

$$N_p(z) := z - \frac{p(z)}{p'(z)}.$$

Fixed points in $\widehat{\mathbb{C}}$: $N_p(z) = z \Leftrightarrow z = \infty$ (repelling) or z is a root of p (attracting) (hence each of the roots has its own basin of attraction).

¹Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).

 $p: \mathbb{C} \to \mathbb{C}$ is a complex polynomial. The **Newton map of** p is the rational map $N_p: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ s.t.

$$N_p(z) := z - \frac{p(z)}{p'(z)}.$$

Fixed points in $\widehat{\mathbb{C}}$: $N_p(z) = z \Leftrightarrow z = \infty$ (repelling) or z is a root of p (attracting) (hence each of the roots has its own basin of attraction).

Newton Dynamical Rigidity (D–Schleicher¹)

Let N_p be a polynomial Newton map of degree $d \ge 3$. Then for every point $z \in \widehat{\mathbb{C}}$ exactly one of the following alternatives holds true:

¹Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).

 $p: \mathbb{C} \to \mathbb{C}$ is a complex polynomial. The **Newton map of** p is the rational map $N_p: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ s.t.

$$N_p(z) := z - \frac{p(z)}{p'(z)}.$$

Fixed points in $\widehat{\mathbb{C}}$: $N_p(z) = z \Leftrightarrow z = \infty$ (repelling) or z is a root of p (attracting) (hence each of the roots has its own basin of attraction).

Newton Dynamical Rigidity (D–Schleicher¹)

Let N_p be a polynomial Newton map of degree $d \ge 3$. Then for every point $z \in \widehat{\mathbb{C}}$ exactly one of the following alternatives holds true:

(B) z belongs to the Basin of attraction of a root of p;

¹Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).

 $p: \mathbb{C} \to \mathbb{C}$ is a complex polynomial. The **Newton map of** p is the rational map $N_p: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ s.t.

$$N_p(z) := z - \frac{p(z)}{p'(z)}.$$

Fixed points in $\widehat{\mathbb{C}}$: $N_p(z) = z \Leftrightarrow z = \infty$ (repelling) or z is a root of p (attracting) (hence each of the roots has its own basin of attraction).

Newton Dynamical Rigidity (D–Schleicher¹)

Let N_p be a polynomial Newton map of degree $d \ge 3$. Then for every point $z \in \widehat{\mathbb{C}}$ exactly one of the following alternatives holds true:

- (B) z belongs to the Basin of attraction of a root of p;
- **(T)** z has Trivial fiber (hence $J(N_p)$ is locally connected at z);

¹Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).

Kostya Drach (Jacobs University)

 $p: \mathbb{C} \to \mathbb{C}$ is a complex polynomial. The **Newton map of** p is the rational map $N_p: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ s.t.

$$N_p(z) := z - \frac{p(z)}{p'(z)}.$$

Fixed points in $\widehat{\mathbb{C}}$: $N_p(z) = z \Leftrightarrow z = \infty$ (repelling) or z is a root of p (attracting) (hence each of the roots has its own basin of attraction).

Newton Dynamical Rigidity (D–Schleicher¹)

Let N_p be a polynomial Newton map of degree $d \ge 3$. Then for every point $z \in \widehat{\mathbb{C}}$ exactly one of the following alternatives holds true:

- **(B)** *z* belongs to the **B**asin of attraction of a root of *p*;
- **(T)** z has Trivial fiber (hence $J(N_p)$ is locally connected at z);
- (R) z belongs, or is mapped by some finite iterate, to the filled Julia set of Renormalizable dynamics (a polynomial-like restriction of N_p with connected Julia set).

¹Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).

Dynamical Rigidity: corollary and remarks

Newton Dynamical Rigidity (D–Schleicher)

Let N_p be a polynomial Newton map of degree $d \ge 3$. Then for every point $z \in \widehat{\mathbb{C}}$ exactly one of the following alternatives holds true:

- **(B)** *z* belongs to the **B**asin of attraction of a root of *p*;
- **(T)** z has **T**rivial fiber (hence $J(N_p)$ is locally connected at z);
- (R) z belongs, or is mapped by some finite iterate, to the filled Julia set of Renormalizable dynamics (a polynomial-like restriction of N_p with connected Julia set).

Corollary

The boundaries of the components of the basins of roots are locally connected.

Kostya Drach (Jacobs University)

 $^{^{2}}$ On local connectivity for the Julia set of rational maps: Newton's famous example. Ann. Math. 168 (2008) 1-48.

³Dynamics of Newton maps. arXiv:1805.11478 (29 May 2018).

Dynamical Rigidity: corollary and remarks

Newton Dynamical Rigidity (D–Schleicher)

Let N_p be a polynomial Newton map of degree $d \ge 3$. Then for every point $z \in \widehat{\mathbb{C}}$ exactly one of the following alternatives holds true:

- **(B)** *z* belongs to the **B**asin of attraction of a root of *p*;
- **(T)** z has **T**rivial fiber (hence $J(N_p)$ is locally connected at z);
- (R) z belongs, or is mapped by some finite iterate, to the filled Julia set of Renormalizable dynamics (a polynomial-like restriction of N_p with connected Julia set).

Corollary

The boundaries of the components of the basins of roots are locally connected.

Related work: Roesch²(cubic Newton maps), **Wang–Yin–Zeng**³(local connectivity of the boundaries of the basins of roots, done in parallel).

Kostya Drach (Jacobs University)

 $^{^{2}}$ On local connectivity for the Julia set of rational maps: Newton's famous example. Ann. Math. 168 (2008) 1-48.

³Dynamics of Newton maps. arXiv:1805.11478 (29 May 2018).

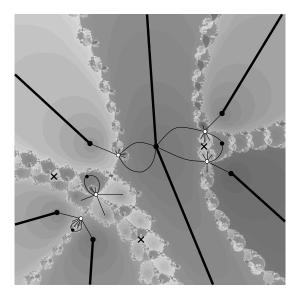
Newton puzzles

(Up to a quasiconformal deformation in the basins of roots) The channel diagram $\Delta :=$ a finite invariant graph connecting all roots to ∞ . A Newton graph (at level n) := the component Δ_n of $N_p^{-n}(\Delta)$ containing ∞ .

Newton puzzles

(Up to a quasiconformal deformation in the basins of roots) The channel diagram $\Delta :=$ a finite invariant graph connecting all roots to ∞ . A Newton graph (at level n) := the component Δ_n of $N_p^{-n}(\Delta)$ containing ∞ . $\Delta_n \subset \Delta_{n+1}$.

Newton graph Δ_1



(Up to a quasiconformal deformation in the basins of roots) The channel diagram $\Delta :=$ a finite invariant graph connecting roots to ∞ . A Newton graph (at level n) := the component Δ_n of $N_p^{-n}(\Delta)$ containing ∞ . $\Delta_n \subset \Delta_{n+1}$.

⁴A combinatorial classification of postcritically fixed Newton maps. Ergod. Theor. Dyn. Syst, Jan. 2018. ⁵Puzzles and the Fatou–Shishikura injection for rational Newton maps. arXiv:1805.10746 (28 May 2018) Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 12/20

(Up to a quasiconformal deformation in the basins of roots) The channel diagram $\Delta :=$ a finite invariant graph connecting roots to ∞ . A Newton graph (at level n) := the component Δ_n of $N_p^{-n}(\Delta)$ containing ∞ . $\Delta_n \subset \Delta_{n+1}$.

Lemma (All poles are in, D–Mikulich–Rückert–Schleicher⁴)

There exists N > 0 so that Δ_N contains all the poles of N_p .

⁴A combinatorial classification of postcritically fixed Newton maps. Ergod. Theor. Dyn. Syst, Jan. 2018. ⁵Puzzles and the Fatou–Shishikura injection for rational Newton maps. arXiv:1805.10746 (28 May 2018) Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 12/20

(Up to a quasiconformal deformation in the basins of roots) The channel diagram $\Delta :=$ a finite invariant graph connecting roots to ∞ . A Newton graph (at level n) := the component Δ_n of $N_p^{-n}(\Delta)$ containing ∞ . $\Delta_n \subset \Delta_{n+1}$.

Lemma (All poles are in, D–Mikulich–Rückert–Schleicher⁴)

There exists N > 0 so that Δ_N contains all the poles of N_p .

Components $\widehat{\mathbb{C}} \setminus \Delta_n$ are almost puzzle pieces (satisfy the Markov property), but might have pinched boundary (hence problem with extraction of polynomial-like maps)!

⁴A combinatorial classification of postcritically fixed Newton maps. Ergod. Theor. Dyn. Syst, Jan. 2018. ⁵Puzzles and the Fatou–Shishikura injection for rational Newton maps. arXiv:1805.10746 (28 May 2018) Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 12 / 20

(Up to a quasiconformal deformation in the basins of roots) The channel diagram $\Delta :=$ a finite invariant graph connecting roots to ∞ . A Newton graph (at level n) := the component Δ_n of $N_p^{-n}(\Delta)$ containing ∞ . $\Delta_n \subset \Delta_{n+1}$.

Lemma (All poles are in, D–Mikulich–Rückert–Schleicher⁴)

There exists N > 0 so that Δ_N contains all the poles of N_p .

Components $\widehat{\mathbb{C}} \setminus \Delta_n$ are almost puzzle pieces (satisfy the Markov property), but might have pinched boundary (hence problem with extraction of polynomial-like maps)!

Lemma (Circle separation property, D-Lodge-Schleicher-Sowinski⁵)

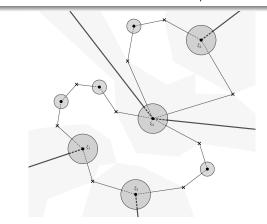
There exists a least integer K > N so that for every component V of $\widehat{\mathbb{C}} \setminus \Delta$ there exists a topological circle $X_V \subset \Delta_K \cap \overline{V}$ that passes through all finite fixed points in ∂V and separates ∞ from all critical values of N_p in V.

⁴A combinatorial classification of postcritically fixed Newton maps. Ergod. Theor. Dyn. Syst, Jan. 2018. ⁵Puzzles and the Fatou–Shishikura injection for rational Newton maps. arXiv:1805.10746 (28 May 2018) Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 12/20

Circle separation property

Lemma (Circle separation property, D-Lodge-Schleicher-Sowinski)

There exists a least integer K > N so that for every component V of $\widehat{\mathbb{C}} \setminus \Delta$ there exists a topological circle $X_V \subset \Delta_K \cap \overline{V}$ that passes through all finite fixed points in ∂V and separates ∞ from all critical values of N_p in V.



Lemma (Circle separation property, D–Lodge–Schleicher–Sowinski⁶)

There exists a least integer K > N so that for every component V of $\widehat{\mathbb{C}} \setminus \Delta$ there exists a topological circle $X_V \subset \Delta_K \cap \overline{V}$ that passes through all finite fixed points in ∂V and separates ∞ from all critical values of N_p in V.

 $\Delta_n^+ :=$ the component containing ∞ of $N_p^{-n}(\Delta \cup \bigcup_V X_V)$. Components of $\widehat{\mathbb{C}} \setminus \Delta_n^+$ (suitably truncated) are Newton puzzle pieces.

 ⁶Puzzles and the Fatou-Shishikura injection for rational Newton maps. arXiv:1805.10746 (28 May 2018)

 Kostya Drach (Jacobs University)
 Rigidity of Newton Dynamics
 March 26, 2019
 14/20

Parameter Rigidity: combinatorially equivalent maps

 N_p is **renormalizable around a critical point** $c \Leftrightarrow \exists$ puzzle piece W containing c and \exists minimal s > 1 (the *period of the renormalization*) such that $N_p^{sk}(c') \in \mathring{W}$ for every critical point $c' \in W$ and $k \ge 0$.

Triviality of fibers at ∞ (D–L–S–S⁷, D–Mikulich–Rückert–Schleicher⁸) If $\infty \in \operatorname{orb}(z)$, then fib $(z) = \{z\}$.

Triviality of fibers at $\infty \implies$ if a Newton map is renormalizable around a critical point c, we can extract a polynomial-like map $\varrho \colon U \to V$ with $K(\varrho) = fib(c)$.

 ⁷ Puzzles and the Fatou-Shishikura injection for rational Newton maps. arXiv:1805.10746 (28 May 2018)

 ⁸ A combinatorial classification of postcritically fixed Newton maps. Ergod. Theor. Dyn. Syst, Jan. 2018.

 Kostya Drach (Jacobs University)
 Rigidity of Newton Dynamics

 March 26, 2019
 15 / 20

Parameter Rigidity: combinatorially equivalent maps

 N_p is **renormalizable around a critical point** $c \Leftrightarrow \exists$ puzzle piece W containing c and \exists minimal s > 1 (the *period of the renormalization*) such that $N_p^{sk}(c') \in \mathring{W}$ for every critical point $c' \in W$ and $k \ge 0$.

Triviality of fibers at ∞ (D–L–S–S⁷, D–Mikulich–Rückert–Schleicher⁸) If $\infty \in \operatorname{orb}(z)$, then fib $(z) = \{z\}$.

Triviality of fibers at $\infty \implies$ if a Newton map is renormalizable around a critical point *c*, we can extract a polynomial-like map $\varrho \colon U \to V$ with $K(\varrho) = \operatorname{fib}(c)$.

Definition (Combinatorially equivalent Newton maps)

Two (suitably normalized) Newton maps are **combinatorially equivalent** if their Newton graphs coincide \Leftrightarrow all the components of the basins of roots are connected to each other in the same way.

⁷Puzzles and the Fatou–Shishikura injection for rational Newton maps. arXiv:1805.10746 (28 May 2018) ⁸A combinatorial classification of postcritically fixed Newton maps. Ergod. Theor. Dyn. Syst, Jan. 2018. Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 15/20

Newton Parameter Rigidity (D–Schleicher⁹)

If N_p and $N_{\tilde{p}}$ are combinatorially equivalent Newton maps, then they are quasiconformally conjugate in a neighborhood of the Julia set provided

⁹Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).
 ¹⁰Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).

Kostya Drach (Jacobs University)

Newton Parameter Rigidity (D–Schleicher⁹)

If N_p and $N_{\tilde{p}}$ are combinatorially equivalent Newton maps, then they are quasiconformally conjugate in a neighborhood of the Julia set provided

• either they are both non-renormalizable,

⁹Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).
 ¹⁰Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).
 Kostva Drach (Jacobs University)
 Rigidity of Newton Dynamics

Newton Parameter Rigidity (D–Schleicher⁹)

If N_p and $N_{\tilde{p}}$ are combinatorially equivalent Newton maps, then they are quasiconformally conjugate in a neighborhood of the Julia set provided

- either they are both non-renormalizable,
- or they are both renormalizable, and there is a bij. between domains of renormalization that respects hybrid equivalence between the little Julia sets and their combinatorial position.

⁹Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).
 ¹⁰Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).
 Kostva Drach (Jacobs University)
 Rigidity of Newton Dynamics

Newton Parameter Rigidity (D–Schleicher⁹)

If N_p and $N_{\tilde{p}}$ are combinatorially equivalent Newton maps, then they are quasiconformally conjugate in a neighborhood of the Julia set provided

- either they are both non-renormalizable,
- or they are both renormalizable, and there is a bij. between domains of renormalization that respects hybrid equivalence between the little Julia sets and their combinatorial position.

The domain of this qc conjugation, say ψ , can be chosen to include all Fatou components not in the basin of the roots, and $\overline{\partial}\psi = 0$ on those Fatou components as well as on the entire Julia set.

⁹Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).

¹⁰Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).

Kostya Drach (Jacobs University)

Newton Parameter Rigidity (D–Schleicher⁹)

If N_p and $N_{\tilde{p}}$ are combinatorially equivalent Newton maps, then they are quasiconformally conjugate in a neighborhood of the Julia set provided

- either they are both non-renormalizable,
- or they are both renormalizable, and there is a bij. between domains of renormalization that respects hybrid equivalence between the little Julia sets and their combinatorial position.

The domain of this qc conjugation, say ψ , can be chosen to include all Fatou components not in the basin of the roots, and $\overline{\partial}\psi = 0$ on those Fatou components as well as on the entire Julia set. Moreover, if N_p and $N_{\tilde{p}}$ are normalized so that they are postcritically finite in the basins, then N_p and $N_{\tilde{p}}$ are affine conjugate.

 $(f, g \text{ hybrid equivalent} \Leftrightarrow \exists \text{ quasiconformal conjugacy } \psi \text{ between } f \text{ and } g \text{ defined on a neighborhood of their filled Julia sets with } \overline{\partial}\psi \mid_{\mathcal{K}(f)} = 0.)$

⁹Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).

¹⁰Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).

Kostya Drach (Jacobs University)

Newton Parameter Rigidity (D–Schleicher⁹)

If N_p and $N_{\tilde{p}}$ are combinatorially equivalent Newton maps, then they are quasiconformally conjugate in a neighborhood of the Julia set provided

- either they are both non-renormalizable,
- or they are both renormalizable, and there is a bij. between domains of renormalization that respects hybrid equivalence between the little Julia sets and their combinatorial position.

The domain of this qc conjugation, say ψ , can be chosen to include all Fatou components not in the basin of the roots, and $\overline{\partial}\psi = 0$ on those Fatou components as well as on the entire Julia set. Moreover, if N_p and $N_{\widetilde{p}}$ are normalized so that they are postcritically finite in the basins, then N_p and $N_{\widetilde{p}}$ are affine conjugate.

 $(f, g \text{ hybrid equivalent} \Leftrightarrow \exists \text{ quasiconformal conjugacy } \psi \text{ between } f \text{ and } g \text{ defined on a neighborhood of their filled Julia sets with } \overline{\partial}\psi \mid_{\mathcal{K}(f)} = 0.)$

Parallel work: Roesch–Yin–Zeng¹⁰(parameter rigidity for non-renormalizable Newton maps).

Kostya Drach (Jacobs University)

⁹Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).

¹⁰Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).

Ingredient of the proof: complex box mappings

Definition (Complex box mapping; Kozlovski-Shen-van Strien)

A holomorphic map $F: \mathcal{U} \to \mathcal{V}$ between two open sets $\mathcal{U} \subset \mathcal{V} \subset \widehat{\mathbb{C}}$ is a complex box mapping if the following holds:

- 1) F has finitely many critical points;
- 2) \mathcal{V} is the union of finitely many open Jordan disks with disjoint closures;
- 3 for every component U of U the image F(U) is a component of V, and the restriction $F: U \to F(U)$ is a proper map;
- (a) every component V of V is *either* a component of \mathcal{U} , or $V \cap \mathcal{U}$ is a union of Jordan disks with pairwise disjoint closures compactly contained in V.

A puzzle piece P_n (of depth n) is the closure of a component of $F^{-n}(\mathcal{V})$.

 ${\mathcal U}$ can have $\infty\text{-many}$ connected components.

Ingredient of the proof: complex box mappings

Definition (Complex box mapping; Kozlovski-Shen-van Strien)

A holomorphic map $F: \mathcal{U} \to \mathcal{V}$ between two open sets $\mathcal{U} \subset \mathcal{V} \subset \widehat{\mathbb{C}}$ is a complex box mapping if the following holds:

- 1) F has finitely many critical points;
- 2) \mathcal{V} is the union of finitely many open Jordan disks with disjoint closures;
- 3 for every component U of U the image F(U) is a component of V, and the restriction $F: U \to F(U)$ is a proper map;
- (4) every component V of \mathcal{V} is *either* a component of \mathcal{U} , or $V \cap \mathcal{U}$ is a union of Jordan disks with pairwise disjoint closures compactly contained in V.

A puzzle piece P_n (of depth n) is the closure of a component of $F^{-n}(\mathcal{V})$.

 \mathcal{U} can have ∞ -many connected components. A complex box mapping arises *the first return map* to the union of critical puzzle pieces.

Rigidity of non-renormalizable box mappings

Rigidity for complex box mappings (Kozlovski-van Strien¹¹)

If $F : U \to V$ is a non-renormalizable complex box mapping whose periodic points are all repelling, and there exists $\delta > 0$ s.t. $mod(V \setminus \overline{U}) \ge \delta$ for every component U of U and V the component of V with $V \supset U$, then

- 1) fib $(z) = \{z\}$ for each $z \in J(F)$;
- 2 F carries no measurable invariant linefields on J(F);
- (3) if $\widetilde{F}: \widetilde{\mathcal{U}} \to \widetilde{\mathcal{V}}$ is another complex box mapping for which there exists a quasiconformal homeomorphism $H: \mathcal{V} \to \widetilde{\mathcal{V}}$ so that $H(\mathcal{U}) = \widetilde{\mathcal{U}}$, $\widetilde{F} \circ H = H \circ F$ on $\partial \mathcal{U}$, and \widetilde{F} is combinatorially equivalent to F w.r.t. H. Then F and \widetilde{F} are quasiconformally conjugate, and this conjugation agrees with H on the boundary of \mathcal{V} .

The proof uses the enhanced nest construction due to **Kozlovski–Shen–van Strien** (2007), the covering lemma due to **Kahn–Lyubich** (2009).

¹¹Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials. Proc. Lond. Math. Soc. (3) 99 (2009) 275-296.

Rigidity of non-renormalizable box mappings

Rigidity for complex box mappings (Kozlovski-van Strien¹¹)

If $F : U \to V$ is a non-renormalizable complex box mapping whose periodic points are all repelling, and there exists $\delta > 0$ s.t. $mod(V \setminus \overline{U}) \ge \delta$ for every component U of U and V the component of V with $V \supset U$, then

- 1) fib $(z) = \{z\}$ for each $z \in J(F)$;
- ② F carries no measurable invariant linefields on J(F);
- (3) if $\widetilde{F}: \widetilde{\mathcal{U}} \to \widetilde{\mathcal{V}}$ is another complex box mapping for which there exists a quasiconformal homeomorphism $H: \mathcal{V} \to \widetilde{\mathcal{V}}$ so that $H(\mathcal{U}) = \widetilde{\mathcal{U}}$, $\widetilde{F} \circ H = H \circ F$ on $\partial \mathcal{U}$, and \widetilde{F} is combinatorially equivalent to F w.r.t. H. Then F and \widetilde{F} are quasiconformally conjugate, and this conjugation agrees with H on the boundary of \mathcal{V} .

The proof uses the enhanced nest construction due to **Kozlovski–Shen–van Strien** (2007), the covering lemma due to **Kahn–Lyubich** (2009). **D–S¹** ······· upgrade to this result to include the renormalizable dynamics (Generalized Rigidity for box mappings).

Kostya Drach (Jacobs University)

¹¹Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials. Proc. Lond. Math. Soc. (3) 99 (2009) 275-296.

Newton Rigidity: general outline of the proof

Using Newton puzzles we can extract a box mapping (as the first return map to a collection of puzzle pieces)

 \Longrightarrow we can apply the Generalized Rigidity of complex box mappings + triviality of fibers at ∞

 \implies rigidity for Newton dynamics.

Thank you for your attention!