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A word about general philosophy on rigidity

Dynamical rigidity: a holomorphic map f is rigid if one can distinguish, in
combinatorial terms, all orbits of f .

Parameter rigidity: a family F of holomorphic maps is rigid if any pair of
combinatorially equivalent maps in F are quasiconformally conjugate in some
neighborhood of their Julia sets.

Rigidity for polynomials: Branner–Hubbard, McMullen, Yoccoz, Lyubich,
Kozlovski–Shen–van Strien... Rigidity for rational maps? We address
rigidity question for Newton maps of polynomials of any degree.

Take-away general philosophy (Rational Rigidity Principle):

(dynamical version) a rational map is either rigid, or it contains an embedded
polynomial dynamics (excluding flexible examples); (parameter space version) a
family of rational maps is rigid provided it contains no embedded polynomial
dynamics, or this dynamics is embedded in “the same way”.
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“In combinatorial terms”: on general puzzles

Let g : U → V be holomorphic, U ⊆ V ⊂ Ĉ.

Definition (A puzzle piece)

A puzzle piece of depth n (notation P i
n) is a closed topological disk s.t.

gk(∂P i
n) ∩ P̊ i

n = ∅ ∀k > 0 (the puzzle is a nice set),

and the set of all puzzle pieces obey the Markov property, that is

any two puzzle pieces either nested (P i
n ⊂ P j

m) or have disjoint interiors; in
the former case n > m;

g(P i
n) = P j

n−1 for some j , and g : P̊ i
n → P̊ j

n−1 is a branched covering.
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Yoccoz puzzles for polynomials
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“In combinatorial terms”: on general puzzles (cont.)

Let g : U → V be holomorphic, U ⊆ V ⊂ Ĉ.

Definition (A puzzle piece)

A puzzle piece of depth n (notation P i
n) is a closed topological disk s.t.

gk(∂P i
n) ∩ P̊ i

n = ∅ ∀k > 0 (the puzzle is a nice set),

and the set of all puzzle pieces obey the Markov property, that is

any two puzzle pieces either nested (P i
n ⊂ P j

m) or have disjoint interiors; in
the former case n > m;

g(P i
n) = P j

n−1 for some j and g : P̊ i
n → P̊ j

n−1 is a branched covering.

Non-escaping set: K (g) :=
{
z ∈ U : gk(z) ∈ U∀k > 0

}
(the filled-in Julia set);

the Julia set: J(g) := ∂K (g).

For x ∈ K (g), let Pn(x) the union of puzzle pieces containing x .

The fiber of x is fib(x) :=
⋂

n>0 Pn(x). The fiber of x is trivial if fib(x) = {x}.
→ fib(x) is the set of points with the same itinerary w.r.t. dynamically defined
puzzle partition → the fiber consists of points “traveling together” → if the fiber
of x is trivial, then the orbit of x is combinatorially distinguishable among all
other orbits.
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Dynamical Rigidity for Newton maps

p : C→ C is a complex polynomial. The Newton map of p is the rational map
Np : Ĉ→ Ĉ s.t.

Np(z) := z − p(z)

p′(z)
.

Fixed points in Ĉ: Np(z) = z ⇔ z =∞ (repelling) or z is a root of p (attracting)
(hence each of the roots has its own basin of attraction).
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Newton dynamical plane: examples
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Dynamical Rigidity for Newton maps: the statement

p : C→ C is a complex polynomial. The Newton map of p is the rational map
Np : Ĉ→ Ĉ s.t.

Np(z) := z − p(z)

p′(z)
.

Fixed points in Ĉ: Np(z) = z ⇔ z =∞ (repelling) or z is a root of p (attracting)
(hence each of the roots has its own basin of attraction).

Newton Dynamical Rigidity (D–Schleicher1)

Let Np be a polynomial Newton map of degree d > 3. Then for every point z ∈ Ĉ
exactly one of the following alternatives holds true:

(B) z belongs to the Basin of attraction of a root of p;

(T) z has Trivial fiber (hence J(Np) is locally connected at z);

(R) z belongs, or is mapped by some finite iterate, to the filled Julia set of
Renormalizable dynamics (a polynomial-like restriction of Np with connected
Julia set).

1Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).
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Fixed points in Ĉ: Np(z) = z ⇔ z =∞ (repelling) or z is a root of p (attracting)
(hence each of the roots has its own basin of attraction).

Newton Dynamical Rigidity (D–Schleicher1)

Let Np be a polynomial Newton map of degree d > 3. Then for every point z ∈ Ĉ
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Dynamical Rigidity: corollary and remarks

Newton Dynamical Rigidity (D–Schleicher)

Let Np be a polynomial Newton map of degree d > 3. Then for every point z ∈ Ĉ
exactly one of the following alternatives holds true:

(B) z belongs to the Basin of attraction of a root of p;

(T) z has Trivial fiber (hence J(Np) is locally connected at z);

(R) z belongs, or is mapped by some finite iterate, to the filled Julia set of
Renormalizable dynamics (a polynomial-like restriction of Np with connected
Julia set).

Corollary

The boundaries of the components of the basins of roots are locally connected.

Related work: Roesch2(cubic Newton maps), Wang–Yin–Zeng3(local
connectivity of the boundaries of the basins of roots, done in parallel).

2On local connectivity for the Julia set of rational maps: Newton’s famous example. Ann. Math. 168

(2008) 1-48.
3Dynamics of Newton maps. arXiv:1805.11478 (29 May 2018).

Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 9 / 20



Dynamical Rigidity: corollary and remarks

Newton Dynamical Rigidity (D–Schleicher)

Let Np be a polynomial Newton map of degree d > 3. Then for every point z ∈ Ĉ
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Newton puzzles

(Up to a quasiconformal deformation in the basins of roots)
The channel diagram ∆ := a finite invariant graph connecting all roots to ∞.
A Newton graph (at level n) := the component ∆n of N−np (∆) containing ∞.

∆n ⊂ ∆n+1.
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Newton graph ∆1
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Newton puzzles (continued)

(Up to a quasiconformal deformation in the basins of roots)
The channel diagram ∆ := a finite invariant graph connecting roots to ∞.
A Newton graph (at level n) := the component ∆n of N−np (∆) containing ∞.
∆n ⊂ ∆n+1.

Lemma (All poles are in, D–Mikulich–Rückert–Schleicher4)

There exists N > 0 so that ∆N contains all the poles of Np.

Components Ĉ \∆n are almost puzzle pieces (satisfy the Markov property), but
might have pinched boundary (hence problem with extraction of polynomial-like
maps)!

Lemma (Circle separation property, D–Lodge–Schleicher–Sowinski5)

There exists a least integer K > N so that for every component V of Ĉ \∆ there
exists a topological circle XV ⊂ ∆K ∩ V that passes through all finite fixed points
in ∂V and separates ∞ from all critical values of Np in V .

4A combinatorial classification of postcritically fixed Newton maps. Ergod. Theor. Dyn. Syst, Jan. 2018.
5Puzzles and the Fatou–Shishikura injection for rational Newton maps. arXiv:1805.10746 (28 May 2018)
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Newton puzzles (continued)

Lemma (Circle separation property, D–Lodge–Schleicher–Sowinski6)

There exists a least integer K > N so that for every component V of Ĉ \∆ there
exists a topological circle XV ⊂ ∆K ∩ V that passes through all finite fixed points
in ∂V and separates ∞ from all critical values of Np in V .

∆+
n := the component containing ∞ of N−np (∆ ∪

⋃
V XV ).

Components of Ĉ \∆+
n (suitably truncated) are Newton puzzle pieces.

6Puzzles and the Fatou–Shishikura injection for rational Newton maps. arXiv:1805.10746 (28 May 2018)
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Parameter Rigidity: combinatorially equivalent maps

Np is renormalizable around a critical point c ⇔ ∃ puzzle piece W containing

c and ∃ minimal s > 1 (the period of the renormalization) such that Nsk
p (c ′) ∈ W̊

for every critical point c ′ ∈W and k > 0.

Triviality of fibers at ∞ (D–L–S–S7, D–Mikulich–Rückert–Schleicher8)

If ∞ ∈ orb(z), then fib(z) = {z}.

Triviality of fibers at ∞ =⇒ if a Newton map is renormalizable around a critical
point c , we can extract a polynomial-like map % : U → V with K (%) = fib(c).

Definition (Combinatorially equivalent Newton maps)

Two (suitably normalized) Newton maps are combinatorially equivalent if their
Newton graphs coincide ⇔ all the components of the basins of roots are
connected to each other in the same way.

7Puzzles and the Fatou–Shishikura injection for rational Newton maps. arXiv:1805.10746 (28 May 2018)
8A combinatorial classification of postcritically fixed Newton maps. Ergod. Theor. Dyn. Syst, Jan. 2018.
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Parameter Rigidity: the statement

Newton Parameter Rigidity (D–Schleicher9)

If Np and Np̃ are combinatorially equivalent Newton maps, then they are
quasiconformally conjugate in a neighborhood of the Julia set provided

either they are both non-renormalizable,

or they are both renormalizable, and there is a bij. between domains of
renormalization that respects hybrid equivalence between the little Julia sets
and their combinatorial position.

The domain of this qc conjugation, say ψ, can be chosen to include all Fatou
components not in the basin of the roots, and ∂ψ = 0 on those Fatou components
as well as on the entire Julia set. Moreover, if Np and Np̃ are normalized so that
they are postcritically finite in the basins, then Np and Np̃ are affine conjugate.

(f , g hybrid equivalent ⇔ ∃ quasiconformal conjugacy ψ between f and g defined on a
neighborhood of their filled Julia sets with ∂̄ψ

∣∣
K(f ) = 0.)

Parallel work: Roesch–Yin–Zeng10(parameter rigidity for non-renormalizable
Newton maps).

9Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).
10Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).

Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 16 / 20



Parameter Rigidity: the statement

Newton Parameter Rigidity (D–Schleicher9)

If Np and Np̃ are combinatorially equivalent Newton maps, then they are
quasiconformally conjugate in a neighborhood of the Julia set provided

either they are both non-renormalizable,

or they are both renormalizable, and there is a bij. between domains of
renormalization that respects hybrid equivalence between the little Julia sets
and their combinatorial position.

The domain of this qc conjugation, say ψ, can be chosen to include all Fatou
components not in the basin of the roots, and ∂ψ = 0 on those Fatou components
as well as on the entire Julia set. Moreover, if Np and Np̃ are normalized so that
they are postcritically finite in the basins, then Np and Np̃ are affine conjugate.

(f , g hybrid equivalent ⇔ ∃ quasiconformal conjugacy ψ between f and g defined on a
neighborhood of their filled Julia sets with ∂̄ψ

∣∣
K(f ) = 0.)

Parallel work: Roesch–Yin–Zeng10(parameter rigidity for non-renormalizable
Newton maps).

9Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).
10Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).

Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 16 / 20



Parameter Rigidity: the statement

Newton Parameter Rigidity (D–Schleicher9)

If Np and Np̃ are combinatorially equivalent Newton maps, then they are
quasiconformally conjugate in a neighborhood of the Julia set provided

either they are both non-renormalizable,

or they are both renormalizable, and there is a bij. between domains of
renormalization that respects hybrid equivalence between the little Julia sets
and their combinatorial position.

The domain of this qc conjugation, say ψ, can be chosen to include all Fatou
components not in the basin of the roots, and ∂ψ = 0 on those Fatou components
as well as on the entire Julia set. Moreover, if Np and Np̃ are normalized so that
they are postcritically finite in the basins, then Np and Np̃ are affine conjugate.

(f , g hybrid equivalent ⇔ ∃ quasiconformal conjugacy ψ between f and g defined on a
neighborhood of their filled Julia sets with ∂̄ψ

∣∣
K(f ) = 0.)

Parallel work: Roesch–Yin–Zeng10(parameter rigidity for non-renormalizable
Newton maps).

9Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).
10Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).

Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 16 / 20



Parameter Rigidity: the statement

Newton Parameter Rigidity (D–Schleicher9)

If Np and Np̃ are combinatorially equivalent Newton maps, then they are
quasiconformally conjugate in a neighborhood of the Julia set provided

either they are both non-renormalizable,

or they are both renormalizable, and there is a bij. between domains of
renormalization that respects hybrid equivalence between the little Julia sets
and their combinatorial position.

The domain of this qc conjugation, say ψ, can be chosen to include all Fatou
components not in the basin of the roots, and ∂ψ = 0 on those Fatou components
as well as on the entire Julia set.

Moreover, if Np and Np̃ are normalized so that
they are postcritically finite in the basins, then Np and Np̃ are affine conjugate.

(f , g hybrid equivalent ⇔ ∃ quasiconformal conjugacy ψ between f and g defined on a
neighborhood of their filled Julia sets with ∂̄ψ

∣∣
K(f ) = 0.)

Parallel work: Roesch–Yin–Zeng10(parameter rigidity for non-renormalizable
Newton maps).

9Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).
10Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).

Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 16 / 20



Parameter Rigidity: the statement

Newton Parameter Rigidity (D–Schleicher9)

If Np and Np̃ are combinatorially equivalent Newton maps, then they are
quasiconformally conjugate in a neighborhood of the Julia set provided

either they are both non-renormalizable,

or they are both renormalizable, and there is a bij. between domains of
renormalization that respects hybrid equivalence between the little Julia sets
and their combinatorial position.

The domain of this qc conjugation, say ψ, can be chosen to include all Fatou
components not in the basin of the roots, and ∂ψ = 0 on those Fatou components
as well as on the entire Julia set. Moreover, if Np and Np̃ are normalized so that
they are postcritically finite in the basins, then Np and Np̃ are affine conjugate.

(f , g hybrid equivalent ⇔ ∃ quasiconformal conjugacy ψ between f and g defined on a
neighborhood of their filled Julia sets with ∂̄ψ

∣∣
K(f ) = 0.)

Parallel work: Roesch–Yin–Zeng10(parameter rigidity for non-renormalizable
Newton maps).

9Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).
10Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).

Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 16 / 20



Parameter Rigidity: the statement

Newton Parameter Rigidity (D–Schleicher9)

If Np and Np̃ are combinatorially equivalent Newton maps, then they are
quasiconformally conjugate in a neighborhood of the Julia set provided

either they are both non-renormalizable,

or they are both renormalizable, and there is a bij. between domains of
renormalization that respects hybrid equivalence between the little Julia sets
and their combinatorial position.

The domain of this qc conjugation, say ψ, can be chosen to include all Fatou
components not in the basin of the roots, and ∂ψ = 0 on those Fatou components
as well as on the entire Julia set. Moreover, if Np and Np̃ are normalized so that
they are postcritically finite in the basins, then Np and Np̃ are affine conjugate.

(f , g hybrid equivalent ⇔ ∃ quasiconformal conjugacy ψ between f and g defined on a
neighborhood of their filled Julia sets with ∂̄ψ

∣∣
K(f ) = 0.)

Parallel work: Roesch–Yin–Zeng10(parameter rigidity for non-renormalizable
Newton maps).

9Rigidity of Newton dynamics. arXiv:1812.11919 (31 Dec 2018).
10Rigidity of non-renormalizable Newton maps. arXiv:1811.09978 (25 Nov 2018).

Kostya Drach (Jacobs University) Rigidity of Newton Dynamics March 26, 2019 16 / 20



Ingredient of the proof: complex box mappings

Definition (Complex box mapping; Kozlovski–Shen–van Strien)

A holomorphic map F : U → V between two open sets U ⊂ V ⊂ Ĉ is a complex
box mapping if the following holds:

1 F has finitely many critical points;

2 V is the union of finitely many open Jordan disks with disjoint closures;

3 for every component U of U the image F (U) is a component of V, and the
restriction F : U → F (U) is a proper map;

4 every component V of V is either a component of U , or V ∩ U is a union of
Jordan disks with pairwise disjoint closures compactly contained in V .

A puzzle piece Pn (of depth n) is the closure of a component of F−n(V).

U can have ∞-many connected components.

A complex box mapping arises the
first return map to the union of critical puzzle pieces.
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Rigidity of non-renormalizable box mappings

Rigidity for complex box mappings (Kozlovski–van Strien11)

If F : U → V is a non-renormalizable complex box mapping whose periodic points
are all repelling, and there exists δ > 0 s.t. mod(V \ U) > δ for every component
U of U and V the component of V with V ⊃ U, then

1 fib(z) = {z} for each z ∈ J(F );

2 F carries no measurable invariant linefields on J(F );

3 if F̃ : Ũ → Ṽ is another complex box mapping for which there exists a
quasiconformal homeomorphism H : V → Ṽ so that H(U) = Ũ ,

F̃ ◦ H = H ◦ F on ∂U , and F̃ is combinatorially equivalent to F w.r.t. H.
Then F and F̃ are quasiconformally conjugate, and this conjugation agrees
with H on the boundary of V.

The proof uses the enhanced nest construction due to Kozlovski–Shen–van
Strien (2007), the covering lemma due to Kahn–Lyubich (2009).

D–S1 upgrade to this result to include the renormalizable dynamics
(Generalized Rigidity for box mappings).

11Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials. Proc. Lond. Math.
Soc. (3) 99 (2009) 275-296.
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Newton Rigidity: general outline of the proof

Using Newton puzzles we can extract a box mapping (as the first return map to a
collection of puzzle pieces)

=⇒ we can apply the Generalized Rigidity of complex box mappings + triviality of
fibers at ∞

=⇒ rigidity for Newton dynamics.
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Thank you for your attention!


