Dynamics of Generalized Tangent maps

Tao Chen

City University of New York

tchen@lagcc.cuny.edu

March 26, 2019

Tao Chen (CUNY)

Generalized Tangent maps

March 26, 2019 1 / 21

A value v ∈ Ĉ an asymptotic value of a holomorphic function f if there is a path γ : [0,1) → C such that

$$\lim_{t\to 1^-} r(t) = \infty \text{ and } \lim_{t\to 1^-} f(\gamma(t)) = v.$$

A value v ∈ Ĉ an asymptotic value of a holomorphic function f if there is a path γ : [0,1) → C such that

$$\lim_{t\to 1^-} r(t) = \infty \text{ and } \lim_{t\to 1^-} f(\gamma(t)) = v.$$

② Let v be asymptotic value of f. If there exist a neighborhood V of v and a simply connected set U such that f : U → V \ {v} is a universal covering, then U is an asymptotic tract of v.

The most well-known family of exponential maps

$$f_k(z)=e^z+k~~{
m or}~f_\lambda(z)=\lambda e^z$$

Two asymptotic values are k and ∞ .

- The bifurcation locus is connected.
- 2 Each hyperbolic component is unbounded and its boundary is a unbounded Jordan arc tending to ∞ in both directions.

L. Rempe-Gillen and D. Schleicher Bifurcations in the Space of Exponential Maps *Invent. Math.* 175 (2009), No. 1, 103 - 135. The family of tangent maps

$$f_{\lambda} = \lambda \tan z$$

is a family of maps with two symmetric asymptotic values $\pm \lambda i$.

The family of tangent maps

$$f_\lambda = \lambda an z$$

is a family of maps with two symmetric asymptotic values $\pm \lambda i$.

Note that if $\{z_1, z_2, \dots, z_p\}$ is a cycle, then $\{-z_1, -z_2, \dots, -z_p\}$ is also a cycle with the same multiplier. Let $\Omega_k = \{\lambda : f_\lambda \text{ has two attracting cycles of period } k\}$ $\Omega'_k = \{\lambda : f_\lambda \text{ has one attracting cycle of period } 2k\}$

Parameter Space of $\lambda \tan z$

Theorem (L. Keen-J. Kotus, 97)

- Ω_1 and Ω'_1 are connected and unbounded; other components are bounded.
- **2** Every Ω_k meets Ω'_k at one solution of $f_{\lambda}^{k-1}(\lambda i) = \infty$.

6 / 21

Path to Chaos

Tao Chen (CUNY)

March 26, 2019 7 / 2

Theorem (C.-Keen-Jiang, 2018)

For the family of the map $f_t = it \tan z$, $t \in [\pi/2, \pi]$, there are two sequences interleaved of parameters $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ for the tangent family

$$\alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \alpha_3 < \cdots < \beta_n < \alpha_n < \cdots < \pi,$$

such that

- If t ∈ (α_n, β_n), f_t has two attracting cycles of period 2ⁿ⁺¹, denoted as (2, 2ⁿ⁺¹).
- If t ∈ (β_n, α_{n+1}), f_t has one attracting cycle of period 2ⁿ⁺², denoted as (1, 2ⁿ⁺²).

Theorem (C.-Keen-Jiang, 2018)

The map $f_{t_{\infty}}$ has no attracting or parabolic cycle where

$$t_{\infty} = \lim_{t \to \infty} \alpha_n = \lim_{t \to \infty} \beta_n$$

and it has an attractor C contained in the real and imaginary lines and it attracts almost all points on the these lines.

Genadi Levin, Weixiao Shen, Sebastian van Strien

Monotonicity of entropy and positively oriented transversality for families of interval maps. (*Positive Transversality via transfer operators and holomorphic motions with applications to monotonicity for interval maps*)

arXiv:1611.10056.

Meromorphic functions of finite type

● Fagella and Keen in [FK] considered M_∞, a family of meromorphic transcendental maps of finite type for which infinity is not an asymptotic value.

Meromorphic functions of finite type

- Fagella and Keen in [FK] considered M_∞, a family of meromorphic transcendental maps of finite type for which infinity is not an asymptotic value.
- **Oynamically natural slice**—the dynamics of singular values is fixed expect one asymptotic value, denoted by v_{λ} .

- Fagella and Keen in [FK] considered M_∞, a family of meromorphic transcendental maps of finite type for which infinity is not an asymptotic value.
- **Oynamically natural slice**—the dynamics of singular values is fixed expect one asymptotic value, denoted by v_{λ} .
- A component of which the free asymptotic value v_λ is attracted by a new attracting cycle is called a shell component. Let Ω_k denote components where the period of the cycle is k.

L. Keen, N. Fagella

Stable components in the parameter plane of meromorphic functions of finite type arXiv:1702.06563.

Theorem (Fagella-Keen)

- Each shell component is simply connected.
- **2** Each component in Ω_1 is unbounded.
- 3 On the boundary, there exists a λ , such that $f_{\lambda}^{k-1}(v_{\lambda}) = \infty$, called virtual center parameter

L. Keen, N. Fagella

Stable components in the parameter plane of meromorphic functions of finite type arXiv:1702.06563.

Theorem

- Each shell component is simply connected.
- **2** Each component in Ω_1 is unbounded.
- On the boundary, there exists a λ, such that f^{k-1}_λ(v_λ) = ∞, called virtual center parameter.

Questions/Conjecture

- Conjecture [Fagella-Keen] Each component of Ω_k , $k \ge 2$, is bounded.
- Por each virtual center parameter λ, is it on the boundary of a shell component?

Consider the family $\mathcal{N}_{p,q,r}$ consisting of $f = P \circ g \circ Q$, where P, Q are polynomials of degree p, q respectively, and $g \in \mathcal{N}_r$ is meromorphic function with no critical values and r asymptotic values counted with multiplicity of asymptotic tracts.

Note that $f(z) = e^{e^z}$ has 3 asymptotic values $\{0, 1, \infty\}$. However, $f \notin \mathcal{N}_3$ since both 0 and ∞ have infinitely many asymptotic tracts.

Theorem (C-Keen)

For any dynamical natural slice of $\mathcal{N}_{p,q,r}$, at every virtual center parameter λ , there exists a shell component Ω , such that $\lambda \in \partial \Omega$.

The family $\mathcal{F}_{\lambda} = \{\lambda \tan^{p} z^{q}\}, \ \lambda \in \mathbb{C}^{*} \ p, q \in \mathbb{N}.$

- Critical points: solutions of $\tan^{p-1} z^q = 0$ and 0;
- Critical Value: 0, super-attracting. attracting basin: $A(0) = \{z : f_{\lambda}^n \to 0 \text{ as } n \to \infty\}$ immediate basin: $A^*(0)$ the component of A(0) containing 0.

• Asymptotic value:
$$(\pm i)^p \lambda$$
.
Denote $v_{\lambda} = (i)^p \lambda$

Theorem

The Julia set of f_{λ} is connected if and only if $v_{\lambda} \notin A^{*}(0)$.

Tao Chen (CUNY)

-

Image: Image:

æ

- Capture components C consist of λ such that fⁿ_λ(v_λ) → 0.
 C_k = {λ : k is the smallest integer such that f^k(v_λ) ∈ A^{*}(0)}
- Shell components S consist of λ such that v_λ is attracted to a nonzero attracting cycle.
 - pq is even, \mathcal{S}_k consists of λ such that f_λ has an attracting cycle of period k
 - pq is odd, S_k consists of λ such that f_λ has an attracting cycle of period 2k or two attracting cycles of period k.

An example

Figure: Parameter space of $\lambda \tan^2 z^3$. Thanks to a program of N. Fagella.

Tao Chen (CUNY)

Theorem (C.-Keen)

- **1** $C_0 \cup \{0\}$ is simply connected.
- **2** Each component of C_k for $k \ge 1$ is simply connected and contains a unique solution of

$$f_{\lambda}^{k}(v_{\lambda})=0.$$

N Fagella, A Garijo

The parameter planes of $\lambda z^m e^z$ for $m \ge 2$

Communications in mathematical physics 273 (3), 2007, 755-783.

Theorem (C.-Keen)

• The set S_1 consists of 2q unbounded simply connected components.

2 For $k \ge 2$, at each solution of

$$f_{\lambda}^{k-1}(v_{\lambda}) = \infty$$

there are 2pq components of S_k .

3 All components of C_k , $k \ge 0$, and S_k , $k \ge 2$, is bounded.

Thank you!!

3

Image: A matrix