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PART I: HISTORY AND DEFINITIONS



Theorem (Baker): Julia sets of
transcendental entire functions con-
tain non-degenerate continua. Haus-
dorff dimension is lower bounded by
1.

Theorem (Misiurewicz): Julia
set of exp(z) = C.

Theorem (McMullen): sine
family always has positive area. exp
family always has dimension 2. Zero
area if there is an attracting cycle. Julia set in the cosine family.



Theorem (Stallard): There exist functions in B with Julia set with
dimension arbitrarily close to 1; dimension 1 does not occur in B. All
dimensions in (1, 2] occur in B.

EK(z) = E(z)−K. Dimension tends to 1 as K increases



Theorem (Bishop): There exists a transcendental entire function whose
Julia set has Hausdorff dimension packing dimension equal to 1.

The functions are of the form

fλ,R,N (z) = [λ(2z2 − 1)]◦N ·
∞∏
k=1

(
1− 1

2

(
z

Rk

)nk)
.



There are two other useful notions of dimension for t.e.f’s.

The upper Minkowski dimension (we require K compact)

dimM (K) = lim sup
ε→0

log(N(K, ε))

− log(ε)
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Lemma: Let K be a compact set. Then

dimH(K) ≤ dimP (K) ≤ dimM (K).
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Julia set is unbounded: define the local upper Minkowski dimension by

dimU,M (A) = dimM (U ∩ A).

Theorem: (Rippon, Stallard) Let f be entire. With at most one
exceptional point, for all z ∈ J(f ), and all bounded open sets U containing
z:

dimU,M (J(f )) = dimP (J(f )).

MOREOVER

If f ∈ B, dimP (J(f )) = 2, and the same is true for dimU,M (J(f ))
(ignoring neighborhoods of the exceptional point).

For our application we have fall all bounded open sets U which intersect
the Julia set

dimH(J(f )) ≤ dimP (J(f )) ≤ dimU,M (J(f )).
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Previous chart of attained dimensions.



Theorem (B): There exists transcendental entire functions with packing
dimension in (1, 2). The set of values attained is dense in (1, 2). More-
over, the packing dimension and Hausdorff dimension may be chosen to
be arbitrarily close together.

Updated possible dimensions chart.
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1.N is a large integer; nk = 2N+k−1.

2. We carefully construct a superexponentially growing sequence {Rk}:

Rk ≥ (R1)2Nk.

3. c in the main cardioid is chosen so that given s ∈ (1, 2),

dimH(J(fc)) = dimP (J(fc)) = s

f (z) = z1024
(

1− 1

2

( z

201024

)1024
)(

1− 1

2

( z

201024 · 22048

)2048
)
· · ·



Behavior of f near the origin.

f (z) = (z2 + c)◦N (1 + ε(z))

f is a degree 2N polynomial-like mapping. Can get a lower bound on the
Hausdorff dimension of the Julia set of the entire function f by estimating
the dimension of the Julia set ∂K(f ) of the polynomial-like map f .



Theorem: Let δ > 0 be given. Then f may be defined so that

| dimH(J(fc))− dimH(∂K(f ))| < δ.

It follows that dimH(J(f )) ≥ s− δ; the dimension at worst shrinks by a
small amount.

Two proof strategies:

1. Construct a quasiconformal mapping of a neighborhood of the Julia
set directly.

2. Introduce a new parameter λ into ε(z). The Julia set moves holomor-
phically in this case.
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Partitioning the Fatou and Julia Set

Schematic of the “Round” Fatou component Ωk containing |z| = Rk, k ≥ 1.

1. The inner and outer boundary curves are C1 and close to circles.

2. The smaller boundary components are close to circles and arranged in
circular layers.

3. All interior and boundary points iterate to Ωk+1.

4. All points in holes iterate “backwards.”
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Partitioning the Fatou and Julia Set

The basin of attraction Bf of the polynomial-like f

1. f is a hyperbolic polynomial-like mapping, so the packing and Hausdorff
dimensions coincide

2. Contains the origin; hence all the zeros of f land inside this basin.

3. f behaves like z2N outside Bf .
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Partitioning the Fatou and Julia Set

“Windy” Fatou components Ω−k+1 = f−k(Ω1), k ≥ 1.

Same topology as round components; new geometry introduced by Bf .



What happens when we zoom into one of the holes?

Its the same picture!



Theorem: Let ω be a Fatou component for f . Then there exists a unique
m so that fm(ω) is

1. fm(Ω) = Ωk, k ≥ 1. “A component of Ωk type.” ω is a round compo-
nent.

2. fm(ω) = Ωk for k ≤ 0. ω is a windy component.

3. fm(ω) = Bf . ω is a copy of the basin of attraction.

Moreover, each component ω is iterated conformally to its category above
with bounded conformal distortion.



What about the points in the holes infinitely often?

Theorem: The set Y of points contained in infinitely many holes is the
set of buried points in the Julia set. In particular

1. Y is dense in the Julia set.

2. The dimension of Y is at least that of the basin Bf ,

dimH(Bf ) ≤ dimH(Y ) ≤ dimH(Bf ) + ε.

3. Y contains the slow escaping set, bounded orbit set, and the bungee
set.



PART III: Controlling the Packing Dimension



Whitney decompositions.

Let Ω be a bounded open set. A Whitney decomposition of Ω into cubes
is a collection of open cubes {Qj} satisfying:

1. The cubes have pairwise disjoint interior.

2. Ω = ∪Qj.

3. There exists a constant C so that
1

C
dist(Qj, ∂Ω) ≤ diam(Qj) ≤ Cdist(Qj, ∂Ω)

The collection {Qj} need not be literal cubes, so long as the boundaries
of the Qj have zero measure.



Whitney decomposition of D with dyadic squares.



Whitney decomposition of D with hyperbolic squares.



We may define the critical exponent of a Whitney decomposition:

α(K) = inf{α :
∑
|Q|α <∞}

Example:
∑
|Q|t � 1

t−1diam(D)t



The key idea is that we may connect the upper Minkowski dimension to
the critical exponent of Whitney decompositions.

Theorem: Let K be a compact set with zero Lebesgue measure. Then

dimM (K) = α(K).



The key idea is that we may connect the upper Minkowski dimension to
the critical exponent of Whitney decompositions.

Theorem: Let K be a compact set with zero Lebesgue measure. Then

dimM (K) = α(K).

Recall that by the results of Rippon and Stallard, to compute the pack-
ing dimension, it suffices to compute dimM,B(J(f )), where B is a ball
containing Ω1. We will do this by the lemma above.
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Theorem: Let ε > 0 be given. Then f may be defined so that the
critical exponent satisfies

|α(J(f ) ∩B)− s| < ε.

Corollary: The packing dimension can be arranged to be arbitrarily
close to the Hausdorff dimension and s.

Proof: We have

s− δ ≤ dimH(J(f )) ≤ dimP (J(f )) ≤ s + ε.

δ and ε can both be arranged to be arbitrarily small.
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Start with a Whitney decomposition W of the complement of J(f ) inside
of the ball B. Let t > s + ε. Then
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In Bishop’s dimension 1 paper, his estimates work for the cubes inW (Round).

The idea for the other two sums is to transfer the calculation to a canonical
region and estimate the errors using conformal mapping estimates.
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For example, we may sum over each inverse image of Bf :∑
Q∈W (Basins)

|Q|t =

∞∑
i=1

∑
Q∈W (Bi)

|Q|t.

Let ω be the component of Ω1-type surrounding Bi. Then there is an m
so that fm : ω → Ω1 is conformal with fm(Bi) = Bf .

By the Kobe distortion theorem∑
Q∈W (Bi)

|Q|t ≤ C · diam(ω) ·
∑

Q∈W (Bi)

|fm(Q)|t.



Lemma: There exists a constant C independent of the conformal map-
ping fm so that ∑

Q∈W (Bi)

|fm(Q)|t ≤ C
∑

Q∈W (Bf )

|Q|t.

Lemma: The components ω have summable diameter:∑
ω

diam(ω)s+ε <∞.

It follows that∑
Q∈W (Basins)

≤ C ·
∑

diam(ω)t ·
∑

Q∈W (Bf )

diam(Q)t.

Dimension of ∂Bf < t, so the sum converges. We use a similar but more
involved approach for the windy components.



Thanks for listening! Any questions?



Questions I have

1. Are all packing dimensions in (1, 2) attainable?

2. Can we arrange for dimP (J(f )) = dimH(J(f ))? Or is the inequality
somehow strict?

3. Is it a lost cause to generate computer images of multiply connected
Fatou components?

4. Can we calculate the dimension of BU(f ) and BO(f ) in these exam-
ples? Are they the same as the dimension of J(f )?

5. Is it interesting that the Julia set in this examples has C1 and fractal
components?


