
Puzzle
for rational maps

Pascale Rœsch

Institut of Mathematics of Toulouse

2019

Rœsch P. (IMT) TCD2019 2019 1 / 72



Overview

A puzzle associated to a map f : X → X is a collection P of puzzle pieces

satisfying certain properties.
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P is a collection of jigsaw puzzles of any level : P = {P0, .....Pn, ....};

Each jigsaw puzzles Pn is a collection of puzzle pieces defining a
partition of X :

X =
⋃

P∈Pn

P and P ∩ Q = ∅ for P 6= Q, P,Q ∈ Pn.

P ∈ Pn =⇒ ∃Q ∈ Pn−1, P ⊂ Q

Q is unique. The idea is to get a more complicate jigsaw puzzle at
each next level (with more puzzle pieces)

the map f acts on the puzzle :

P ∈ Pn =⇒ f (P) ∈ Pn−1
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The goal of such jigsaw puzzle is to give to any point of the space X a
precise address (depending on the level n) which is compatible with the
dynamics.

Any point x is included in some P with P ∈ Pn for each level n ∈ N.
If x ∈ ∂P then P is not unique.

On some subset of X , one can define Pn(x) as the unique puzzle piece of
level containing x

P0(x) ⊃ P1(x) ⊃ ... ⊃ Pn(x) ⊃ Pn+1(x) ⊃ .... 3 x

is the sequence of decreasing puzzle pieces containing x

P0(f (x)) = f (P1(x)) ⊃ P1(f (x)) = f (P2(x)) ⊃ ... ⊃ Pn−1(f (x)) = f (Pn(x)) ⊃ Pn(f (x)) = f (Pn+1(x)) ⊃ .... 3 f (x)

is the sequence of decreasing puzzle pieces containing f (x)
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If the diameter of the sequence of puzzle pieces shrinks to 0

P0(x) ⊃ P1(x) ⊃ ... ⊃ Pn(x) ⊃ Pn+1(x) ⊃ .... 3 x

then it gives a precise location of the point x .
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Example

The tent map is defined on [0, 1] by

T (x) =

{
2x if 0 ≤ x ≤ 1/2

2(1 − x) if 1/2 ≤ x ≤ 1

P0 = {]0, 1[},P1 = {]0, 1/2[, ]1/2, 1[},
P2 = {]0, 1/4[, ]1/4, 1/2[, ]1/2, 3/4[, ]3/4, 1[}...

A basic method of studying its dynamics is to find a symbolic
representation: an encoding of the points by sequences of symbols such
that the map T becomes the shift map.

.
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Puzzles are the analogous of a Markov partition for hyperbolic systems.

Sinaï and Bowen used Markov partition to describe uniformly hyperbolic
systems.
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A way to define a puzzle is by cutting the space with a graph Γ

Puzzle pieces are obtained by pull back by the dynamics of an starting
partition
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This way of understanding the dynamics using coding was already used in
the study of hyperbolic systems.

The presence of dilatation, contraction but also bending does not allow to
build a general theory.

It will be more a collection of examples.
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Branner-Hubbard puzzle, cubic polynomials

Theorem (B-H)
For a cubic polynomial f with one critical point in K (f ), the Julia set K (f )
is a Cantor set if and only if the critical components of K (f ) are aperiodic.
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Branner-Hubbard Puzzle
Let f be monic of degree 3. f is conjugated to z 7→ z3 near ∞.

Let Γ0 be an equipotential containing the critical value

Let Γ1 = f −1(Γ0) figure height curve

...let Γn+1 = f −1(Γn) for n ≥ 0

A piece of puzzle of level n is any bounded connected component of
C \ Γn

Puzzle pieces are topological disks .

For x ∈ K (f ), let Pn(x) be the puzzle piece containing x

f (Pn+1(x)) = Pn(f (x))

f : Pn+1(x) → Pn(f (x)) is a covering of degree at most 2
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Branner-Hubbard Puzzle
Every point x ∈ K (f ) defines a "nest" of puzzle pieces

x ∈ Pn+1(x) ⊂ Pn(x) ⊂ · · · ⊂ P1(x) ⊂ P0(x)

Kx the connected component of K (f ) containing x satisfies

Kx =
⋂
n≥0

Pn(x)

Remark
K (f ) is a Cantor set ⇐⇒ diam(Pn(x)) → 0 for every x .

Kx is k-periodic ⇐⇒ the nest is k-periodic :

f k(Pn+k(x)) = Pn(x) for n ≥ n0.

Rœsch P. (IMT) TCD2019 2019 12 / 72



Branner-Hubbard Puzzle
Every point x ∈ K (f ) defines a "nest" of puzzle pieces

x ∈ Pn+1(x) ⊂ Pn(x) ⊂ · · · ⊂ P1(x) ⊂ P0(x)

Kx the connected component of K (f ) containing x satisfies

Kx =
⋂
n≥0

Pn(x)

Remark
K (f ) is a Cantor set ⇐⇒ diam(Pn(x)) → 0 for every x .

Kx is k-periodic ⇐⇒ the nest is k-periodic :

f k(Pn+k(x)) = Pn(x) for n ≥ n0.

Rœsch P. (IMT) TCD2019 2019 12 / 72



Branner-Hubbard Puzzle
Every point x ∈ K (f ) defines a "nest" of puzzle pieces

x ∈ Pn+1(x) ⊂ Pn(x) ⊂ · · · ⊂ P1(x) ⊂ P0(x)

Kx the connected component of K (f ) containing x satisfies

Kx =
⋂
n≥0

Pn(x)

Remark
K (f ) is a Cantor set ⇐⇒ diam(Pn(x)) → 0 for every x .

Kx is k-periodic ⇐⇒ the nest is k-periodic :

f k(Pn+k(x)) = Pn(x) for n ≥ n0.

Rœsch P. (IMT) TCD2019 2019 12 / 72



Branner-Hubbard Puzzle
Every point x ∈ K (f ) defines a "nest" of puzzle pieces

x ∈ Pn+1(x) ⊂ Pn(x) ⊂ · · · ⊂ P1(x) ⊂ P0(x)

Kx the connected component of K (f ) containing x satisfies

Kx =
⋂
n≥0

Pn(x)

Remark
K (f ) is a Cantor set ⇐⇒ diam(Pn(x)) → 0 for every x .

Kx is k-periodic ⇐⇒ the nest is k-periodic :

f k(Pn+k(x)) = Pn(x) for n ≥ n0.

Rœsch P. (IMT) TCD2019 2019 12 / 72



Branner-Hubbard Tableaux
The dynamics can be read on the diagonal of the tableaux

P0(x)

P1(x)

P2(x)

P3(x)
...
...

Pn(x)

Pn+1(x)
...

f↗

f↗

f↗
...
...

f↗

f↗

P0(f (x))

P1(f (x))

P2(f (x))
...
...

Pn−1(f (x))

Pn(f (x))

Pn+1(f (x))
...

f↗

f↗
...
...

f↗

f↗

f↗

P0(f
2(x))

P1(f
2(x))

...

...

Pn−2(f
2(x))

Pn−1(f
2(x))

Pn(f
2(x))

...

...
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Some Analysis

To prove that Kx =
⋂

Pn(x) is reduced to {x} one needs to understand
this combinatorics and the following analysis.

1 The modulus of an annulus A estimates its "size", it is a conformal
invariant and mod (DR \ D1) =

1
2π log(R) ;

2 If an annulus D \ K has infinite modulus then K is one point ;
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1 Consider the annuli An(x) = Pn(x) \ Pn+1(x) which are disjoint,
essential in P0(x) \ Kx ;

2 Grötzsch inequality : mod(P0(x) \ Kx) ≥
∑

mod(An(x)) ;

3 it is enough to prove that
∑

mod(An(x)) = ∞.
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Generally f (An+1(x)) 6= An(f (x)) for An(x) = Pn(x) \ Pn+1(x) but

It is critical if Pn+1(x) contains the critical point and
mod (An(x)) =

1
2 mod (An−1(f (x))).

�
�
�
�

It is semi-critical if An(x) contains the critical point and
mod (An(x)) ≥ 1

2 mod (An−1(f (x))).

�
�
�
�

It is non critical if Pn(x) contains no critical point and
mod (An(x)) = mod (An−1(f (x))).
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mod (An(x)) ≥ 1

2 mod (An−1(f (x))).

�
�
�
�

It is non critical if Pn(x) contains no critical point and
mod (An(x)) = mod (An−1(f (x))).
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Two important properties :
Pn+1(x) ⊂ Pn(x)

Pn(x) is a topological disk
So that there is a non degenerate annulus Pn(x) \ Pn+1(x).

Remark : If Kx is l-periodic then

f l : Pn+l(x) → Pn(f
l(x)) = Pn(x)

is a covering of degree at most 2.
If the degree is 2 then f l : Pn+l(x) → Pn(f

l(x)) = Pn(x) is a
polynomial like map of degree 2 so conjugate to some z2 + c

if the degree is 1 then Kx = {x} is periodic.
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Theorem (McMullen)
For a cubic polynomial f with Cantor Julia set, the Lebesque measure of
J(f ) is zero.
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If the puzzle pieces / graph does not separate the Julia set

then we just get Kx = K (f )

So the graph used has to cut the Julia set in two pieces at least.

Cut it properly i.e. in one point
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Let f : U → V with U ⊂ V

Define a puzzle for the map f

by a finite connected graph Γ ⊂ U satisfying

f (Γ) ∩ U ⊂ U

the forward orbits of critical points are disjoint from Γ

The puzzle pieces of level n

are the connected components of f −n(U \ Γ)

intersecting K (f ) = f −n(U).
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Yoccoz puzzles for quadratic polynomials

Yoccoz Theorem : The map is renormalizable or the impression of puzzle
pieces is one point
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Siegel disks

Carsten Petersen constructed a puzzle piece for Siegel disk working on the
Blaschke model.

Petersen, Petersen-Zakeri : Most Siegel Julia sets are locally connected
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Higher degree polynomials

Those constructions have been generalized for many cubic polynomials and
in higher degree for polynomials . The goal is to prove that⋂

n∈N Pn(x) = {x}
or the map is renormalizable,
then find another puzzle for the renormalized map.

There are several critical points and the degree is no more 2. New tools :
develop the combinatorics by constructing particular nest called
KSS-nest
use analytic tools like Kahn-Lyubich covering Lemma.
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Results that can be proved using puzzles
one can get that some components of the Julia set are points, or
copies of Julia sets by getting renormalization domains (B-H)

one can get local connectivity of a set X , where X is a Julia set, the
boundary of a Fatou component or parts of M. Xn(x) = Pn(x) ∩ X is
a basis of connected neighbourhoods.

one can get measure 0 of the Julia set or parts of it based on
McMullen inequality area(Pn+1) ≤ area(Pn)

1+4π mod (An)
.

one can get Rigidity: similar puzzles leads to combinatorially conjugacy
that can be promoted QC or conformal using analytic tools .

one can get convergence of an access like external ray, since puzzle
pieces can be used like prime-ends.

one can get a description of a rational map as a mating using the
conjugacy given by puzzles.

one can get model in parameter space via puzzles in parameter spaces
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Rational maps
For rational maps there is no equipotential and rays cutting the Julia set
like for polynomials

Julia set of a rational map is more complicate
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First example : cubic Newton map

.
The Newton’s method NP of a polynomial P is defined by

NP(z) = z − P(z)

P ′(z)
.

The roots of P are super-attracting fixed points of NP .
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The Julia set of a rational map is defined as the unique minimal compact
subset of the Riemann sphere Ĉ totally invariant ( by N and N−1)
containing at least 3 points.
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To cut the Julia set in small pieces we need to construct the equivalent to
external ray.

There are 3 basins corresponding to the 3 roots of P , ∞ is a common
point, landing of fixed internal rays in the basins.
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Except in the symmetric case, only two basins intersect and there is a last
angle of intersection

There is a Cantor set of angles Θ defining the intersection.
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Construction of articulated rays by iterated pull back

It is a curve γ such that f k(γ) = γ ∪ R1(t) ∪ R2(−t) with t ∈ Θ. It
consists in infinitely many internal rays alternating from basin 1 et 2.
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Using the following two graphs,

Theorem (R)
The intersection of the puzzle piece is either a point or the homeomorphic
image of the filled Julia set of a quadratic polynomial.
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Theorem (R)
In most cases the Julia set is locally connected.

Theorem (R)
In particular J(N) ⊃ h(J(P)) where J(P) is a non locally connected Julia
set of quadratic polynomials P and J(N) is locally connected.
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We use this puzzle structure to prove Tan Lei’s conjecture

Theorem (Aspenberg, R)
There exists a subset RC of renormalizable cubic polynomials, a subset RN
of renormalizable cubic Newton maps and a map M : RC → RN which is
onto and such that M(f ) is the mating of f with the polynomial
f∞(z) = z(z2 + 3

2).

One can understand the dynamics of N through the dynamics of the
polynomials. But there is no external rays any more.
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Sketch of the mating

Rœsch P. (IMT) TCD2019 2019 35 / 72



Sketch of the mating

Rœsch P. (IMT) TCD2019 2019 35 / 72



Sketch of the mating

Rœsch P. (IMT) TCD2019 2019 35 / 72



Sketch of the mating

Rœsch P. (IMT) TCD2019 2019 35 / 72



Sketch of the mating

Rœsch P. (IMT) TCD2019 2019 35 / 72



Understand rational map via the two polynomials
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Definition
Two polynomials f1 and f2 are said mateable, if there exist a rational map
R and two semi-conjugacies φj : Kj → Ĉ conformal on the interior of Kj ,
such that φ1(K1) ∪ φ2(K2) = Ĉ and

∀(z ,w) ∈ Ki × Kj , φi (z) = φj(w) ⇐⇒ z ∼r w .

The relation ∼r is generated by :
the landing point of R1(t) is equivalent to the landing point of R2(−t).
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Theorem (Aspenberg, R)
There exists a subset RC of renormalizable cubic polynomials, a subset RN
of renormalizable cubic Newton maps and a map M : RC → RN which is
onto and such that M(f ) is the mating of f with the polynomial
f∞(z) = z(z2 + 3

2).

Idea of the proof : we construct the semi conjugacy by sending the puzzle
pieces of the abstract mating to the puzzle pieces for the Newton map.
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To find the cubic Newton map, one has to investigate the space of cubic
Newton map.

It is a one parameter slice with symmetries.
More precisely any Newton map is conjugate to one of the form

Nλ(z) =
2z3 − (λ2 − 1

4)

3z2 − (λ2 + 3
4)

with λ ∈ C \ {±3
2
, 0}

The graphs exist and define puzzles in some precise regions of the
parameter plane called para-puzzle pieces.
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To define them one has to transfer to the parameter plane the articulated

rays and all the pre-images.
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Theorem (Wang, R, Yin)
(Advances 2017) Any ray in any hyperbolic component lands. The
boundary of any hyperbolic component is a Jordan curve.
Rigidty : Two Newton maps with the same combinatorics are conformally
conjugated.

It generalizes the proof done with para-puzzle pieces of the following

Theorem (R)
The boundary of the principal hyperbolic components are Jordan curves.
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Sketch of the proof in the case of the principal hyperbolic component:
Assume λ1 and λ2 are two accumulation points of an irrational ray so
that Rλi

(t) lands at the free critical point of Nλi
.

Then the Newton maps Nλ1 and Nλ2 share the combinatorial dynamics
with respect to the puzzles constructed with the same angles.
There is a topological conjugacy ψ between Nλ1 and Nλ2 , which is
holomorphic in the Fatou set of Nλ1 .
Using control on the distortion, on the shape and the decreasing of
puzzle pieces we get that the conjugacy is a quasi-conformal map.
The Lebesgue measure of J(Nλi

) is zero ( Lyubich, Shishikura
arguments on rational like maps with an admissible puzzle)
The conjugacy is a Möbius transformation

More recent progress in the dynamical plane...
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Theorem (Wang, Yin, Zeng)
Let fp be the Newton map for any non-trivial polynomial P . Then the
boundary of any immediate root basin B is locally connected.

This is proved by generalizing the work for cubic Newton maps. Namely
the puzzles by applying KSS nest and Kahn Lyubich covering Lemma.

Theorem (R., Yin, Zeng)
(arxiv. 11/2018) Non-renormalizable Newton maps are rigid. More
precisely, we prove that the topological conjugacy is equivalent to
quasiconformal conjugacy in this case.

Theorem ( Drach, Lodge, Schleicher, Sowinski)
There exists an invariant graph for higher degree Newton maps that gives a
Fatou-Shihikura injection.

Theorem (Drach,Schleicher)
Rigidity for non renormalisable Newton maps or in the same "way".
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McMullen maps

We consider the maps

fλ : z 7→ zn +
λ

zn
.

For small λ, the map fλ is a "perturbation" of zn whose Julia set is the
unit circle.

McMullen showed that the Julia set of fλ is a Cantor set of simple closed
curves provided
n 6= 1, 2 and λ is small.

We restrict to n ≥ 3.
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There exist also maps which are renormalizable and contain copies of

polynomial Julia sets.
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In the parameter plane appear :
the unbounded component which is the Cantor set region
the neighborhood of 0 where J(fλ) is a Cantor set of circles
the other "holes" where the Julia set is a Sierpinsky carpet.

n = 3

H∞ : the set of λ so that the
critical points converge to ∞.

.
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H0

H2

H0 is the unbounded component

H2 is the component contaning 0

Precisely,

Theorem (Devaney-Look-Uminsky; Devaney-Russell)
If λ ∈ H0, then J(fλ) is a Cantor set ;
If λ ∈ H2 \ {0}, then J(fλ) is homeomorphic to the product of a
Cantor set and a circle ;
If λ ∈ H∞ \ (H0 ∪H2) , then J(fλ) is a Sierpinsky carpet ;
If λ /∈ H∞ then J(fλ) is connected.
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H0

H2

Theorem (Devaney)
The boundary of H2 is a Jordan curve.

Conjecture (Devaney)
The boundary of any connected component of H∞ is a Jordan curve.
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Theorem (Qiu, Rœsch, Wang, Yin )
Let H be any connected component of H∞. Then H is a Jordan domain.

Moreover

Proposition (Qiu, Rœsch, Wang, Yin )
The parametrization extends to the boundary as a function ν(θ).

If θ is periodic then the dynamical ray lands at a parabolic point.
If θ is not periodic then the dynamical ray lands at the critical value.

A parameter λ is a cusp if fλ has a parabolic cycle.

Corollary
The cusps are dense in the boundary of H0.
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Some symmetries :

fλ(z) = fλ(z) and fλ(ωz) = ωfλω−2(z) where ω = e
2iπ
n−1 .

We will always restrict to the fundamental domain :

F = {λ ∈ C∗ | 0 ≤ argλ <
2π

n − 1
}

F

n = 4
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Some dynamics

The maps fλ(z) = zn + λ/zn are the composition of two simple maps

z 7→ z +
λ

z
and zn.

The map

z 7→ z +
λ

z

is just conjugated to

z 7→ z +
1
z
.
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z + 1/z

.
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The critical set of the map fλ(z) = zn + λ/zn is

Crit = {0,∞} ∪ Cλ

where
Cλ = {c | c2n = λ} = {c0e

ikπ
n | k ∈ [0, .., 2n − 1]}

n = 4

.
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In each sector the map is one to one onto C \ ±v0[1,+∞].

fλ

On can pull back any sector except the ones containing ±v0.
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S1 \ (Θ0 ∪Θn) =
( 1

2n ,
1
2

]
∪
(1

2 + 1
2n , 1

]

τ(θ) = nθ mod 1.

θ has itinerary (s0, · · · , sk , · · · )

if τk(θ) ∈ Θsk

Θ =
{
θ | τk(θ) ∈ S1 \ (Θ0 ∪Θn) ∀k ≥ 0

}

.
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Pulling back to the sectors without critical values

−→
fλ

n = 4

The intersection of a decreasing sequence of sectors shrinks to a curve in
some cases.
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Theorem (Devaney, Qiu-Wang-Yin)
For any λ in the interior of the fundamental domain F and for any θ ∈ Θ
with itinerary (s0, s1, · · · , ) the set

Ωθ
λ :=

⋂
k≥0

f −k
λ (Sλ

sk
∪ Sλ

−sk
)

is a Jordan curve intersecting the Julia set under a Cantor set.
 

 

 

 

"cut rays" Ω1
λ = Ω

1/2
λ

n = 3.

There is a similar construction for λ ∈ R.
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Notations :
Bλ is the immediate basin of ∞,
φλ : Bλ → C \ D the Böttcher map :

φλ(fλ(z)) = (φλ(z))
n, φ′λ(∞) = 1,

Rλ(θ) is the ray of angle θ in Bλ :

Rλ(θ) := φ−1
λ ((1,+∞)e2iπt).

Properties of "cut rays" :

Ωθ
λ = −Ωθ

λ = Ω
θ+1/2
λ ;

fλ : Ωθ
λ → Ω

τ(θ)
λ is two to one ;

Ωθ
λ ∩ Bλ = Rλ(θ) ∪ Rλ(θ + 1/2) ∪ {∞} ;

Ωθ
λ ∩ (C \ J(fλ)) ⊂

⋃
k≥0 f

−k
λ (Bλ).
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The "cut rays" are used in order to construct a puzzle.

Theorem ( Qiu-Wang-Yin)
If J(fλ) is not a Cantor set, then the boundary of Bλ is a Jordan curve.

The precise result is on decreasing of puzzle pieces , it is used in order to
get the rigidity in the parameter plane.
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Parameter plane. We restrict to H0.

To prove that ∂H0 is a Jordan curve we will prove that the impression of
any ray is reduced to a single point.

Let Φ0 : H0 → C \ D be a parametrization given by " the position of
critical value in Bλ" :

Φ0(λ) = (φλ(vλ))
2.

A ray R(t) is Φ−1
0 (]1,∞]e2iπt).
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The impression of a ray is the intersection :

Imp(t) :=
⋂
k≥1

Φ−1
0 ({]1, 1 + 1/k[e2iπθ | |θ − t| < 1/k})

.
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Idea of the proof :

1 We prove that the impression is a finite set ; since it is a connected
subset of ∂H0, it will be one point.

2 To get 1) we prove that parameters in the impression of a ray have
special properties :

I either "the dynamical ray" lands at a critical value ,
I or "the dynamical ray" lands at a parabolic cycle (finite set).

3 For two parameters in the same impression, which are not cusps, we
construct a conjugacy between the maps and use

I Thurston’s theorem in the post-critically finite case ;
I that the homeomorphism is quasi-conformal, conformal on the Fatou

set and that the Julia set is of measure zero.
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Special properties at ∂H0 :

Proposition
For λ ∈ ∂H0 the boundary ∂Bλ either contains the critical set Cλ or a
parabolic point.

Assume that ∂Bλ ∩ Cλ = ∅ and that ∂Bλ contains no parabolic point.
Then the map fλ : ∂Bλ → Bλ is expanding.

Therefore there exist Uλ,Vλ disks with Bλ ⊂ Vλ ⊂ Vλ ⊂ Uλ such that
fλ : Vλ → Uλ is a polynomial-like map with one critical point.

For nearby λ, one should have a polynomial-like map with the same degree.
In H0, J(fλ) is a Cantor set.

Contradiction
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Special properties in Imp(t) :

Proposition
For λ ∈ Imp(t), the dynamical ray Rλ(t/2) or Rλ(t/2 + 1/2) lands at a
parabolic cycle, or at one of the critical values.

There is a critical value or a parabolic point on ∂Bλ : pλ. Denote by
Rλ(t

′) the ray landing at pλ. Assume t ′ 6= t
2 and t ′ 6= t+1

2 .
Rλ(t

′) ∪ {pλ}, Rλ(
t
2) and Rλ(

t+1
2 ) are separated by cut rays Ωλ

α and Ωλ
β .

Rλ(t
′)

Ωα
λV+

λ • They move holomorphically
Rλ(

t
2)

Ωβ
λ

Rλ(
t+1
2 ) so stay in different components

Contradiction.

.

Rœsch P. (IMT) TCD2019 2019 68 / 72



Special properties in Imp(t) :

Proposition
For λ ∈ Imp(t), the dynamical ray Rλ(t/2) or Rλ(t/2 + 1/2) lands at a
parabolic cycle, or at one of the critical values.

There is a critical value or a parabolic point on ∂Bλ : pλ. Denote by
Rλ(t

′) the ray landing at pλ. Assume t ′ 6= t
2 and t ′ 6= t+1

2 .

Rλ(t
′) ∪ {pλ}, Rλ(

t
2) and Rλ(

t+1
2 ) are separated by cut rays Ωλ

α and Ωλ
β .

Rλ(t
′)

Ωα
λV+

λ • They move holomorphically
Rλ(

t
2)

Ωβ
λ

Rλ(
t+1
2 ) so stay in different components

Contradiction.

.

Rœsch P. (IMT) TCD2019 2019 68 / 72



Special properties in Imp(t) :

Proposition
For λ ∈ Imp(t), the dynamical ray Rλ(t/2) or Rλ(t/2 + 1/2) lands at a
parabolic cycle, or at one of the critical values.

There is a critical value or a parabolic point on ∂Bλ : pλ. Denote by
Rλ(t

′) the ray landing at pλ. Assume t ′ 6= t
2 and t ′ 6= t+1

2 .
Rλ(t

′) ∪ {pλ}, Rλ(
t
2) and Rλ(

t+1
2 ) are separated by cut rays Ωλ

α and Ωλ
β .

Rλ(t
′)

Ωα
λV+

λ • They move holomorphically
Rλ(

t
2)

Ωβ
λ

Rλ(
t+1
2 )

so stay in different components
Contradiction.

.

Rœsch P. (IMT) TCD2019 2019 68 / 72



Special properties in Imp(t) :

Proposition
For λ ∈ Imp(t), the dynamical ray Rλ(t/2) or Rλ(t/2 + 1/2) lands at a
parabolic cycle, or at one of the critical values.

There is a critical value or a parabolic point on ∂Bλ : pλ. Denote by
Rλ(t

′) the ray landing at pλ. Assume t ′ 6= t
2 and t ′ 6= t+1

2 .
Rλ(t

′) ∪ {pλ}, Rλ(
t
2) and Rλ(

t+1
2 ) are separated by cut rays Ωλ

α and Ωλ
β .

Rλ(t
′)

Ωα
λV+

λ • They move holomorphically
Rλ(

t
2)

Ωβ
λ

Rλ(
t+1
2 ) so stay in different components

Contradiction.

.
Rœsch P. (IMT) TCD2019 2019 68 / 72



Lemma
For 0 ≤ t < 1/(n − 1) there is a finite number of cusps in Imp(t).

Proof.
The dynamical ray Rλ(t/2) lands at a parabolic point,
then there exists k ≥ 1 such that τk(t/2) = t/2 mod 1
k depends only on t.

λ satisfies : ∃ x | f kλ (x) = x , (f kλ )
′(x) = 1

This is a finite set.

Lemma
If 0 ≤ t < 1/(n − 1) and λ1, λ2 ∈ Imp(t) are not cusps, then Rλ1(t/2)
lands at vλ1 and Rλ2(t/2) lands at vλ2 .

By continuity.
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Assume that λ1, λ2 ∈ Imp(t) are not cusps and t ∈ Q.

the Böttcher maps give a conjugacy φ on the basin of ∞ ;
φ extends to the closure ;
the maps are post-critically finite since Rλi

(t/2) lands at the critical
value ;
φ sends the postcritical set of fλ1 to the one of fλ2 ;
φ extends to a homeomorphism of C ;
its lifts ψ gives a combinatorial conjugacy in Thurston’s sense ;
by Thurston’s theorem fλ1 and fλ2 are Möbius conjugate.
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Assume now that λ1, λ2 ∈ Imp(t) are not cusps and t ∈ R \ Q.

The cut ray Ω1
λi
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Rigidity for non-recurrent exponential maps
Let fc(z) = ez + c . Let Γ be a closed forward invariant graph formed by
finitely many periodic rays together with their landing points.

For each n, the the connected components of C\ where Γn = ∪n
j=0f

−j(Γ)
are puzzle pieces of level n.

A parameter c is combinatorially non-recurrent if there is a suitable Γ
which separates the singular value from the postsingular set.

Theorem[Benini]
Let c ; c0 be non-escaping parameters, and fc be combinatorially non-
recurrent. If fc0 is combinatorially equivalent to fc , then c0 = c .

Rœsch P. (IMT) TCD2019 2019 72 / 72



Rigidity for non-recurrent exponential maps
Let fc(z) = ez + c . Let Γ be a closed forward invariant graph formed by
finitely many periodic rays together with their landing points.
For each n, the the connected components of C\ where Γn = ∪n

j=0f
−j(Γ)

are puzzle pieces of level n.

A parameter c is combinatorially non-recurrent if there is a suitable Γ
which separates the singular value from the postsingular set.

Theorem[Benini]
Let c ; c0 be non-escaping parameters, and fc be combinatorially non-
recurrent. If fc0 is combinatorially equivalent to fc , then c0 = c .

Rœsch P. (IMT) TCD2019 2019 72 / 72


