Renormalisation of asymmetric interval maps

Kozlovski & van Strien

March 24, 2019

1/26



Symmetric vs Asymmetric Maps

There is an increasing interest in understanding families of maps of
the form f.: R — R, defined by

|x|*+c  when x <0,
fe(x) = { (1)

x? 4+ ¢ when x>0
where 5 > a > 1 and their generalisations.

In the symmetric case when o = 8 = 2 this corresponds to the
family f.(x) = x> + c.

Aim talk: to discuss the first results about this setting.
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Summary of results

Partial results on:
@ Period doubling,
@ Renormalisation,

@ Absence of wandering intervals.

Alternative prototype family:

fr(x) =

t—1—t|x|* when x <0,
t—1—txP when x >0

3/26



Period doubling in the quadratic case

Consider the family f,(x) = ax(1 — x), x € [0,1] and a € [0, 4].
@ For a = 2 it has a fixed point which attracts all points in (0,1)

e for a = 4 it contains a one-sided shift of two symbols.

o
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Consider the family f,(x) = ax(1 — x), x € [0,1] and a € [0, 4].
@ For a = 2 it has a fixed point which attracts all points in (0,1)

e for a = 4 it contains a one-sided shift of two symbols.

B

Numerical observation: Feigenbaum & Coullet-Tresser

@ Period doubling occurs as increasing parameters a; = 3,
as = 3.4494897428, ag = 3.5440903596, ai;¢ = 3.5644072661,
azy = 3.5687594195, aga = 3.5696916098, a., = 3.5699456.

@ rate of converence:
(32n71 - a2n72)/(azn — aznfl) — 4.6692016009....
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I: Monotonicity of bifurcations

Theorem (Sullivan, Thurston, Milnor, Douady, Tsujii, .... (1980's))

As a increases, periodic points appear and never disappear.

All these proofs use complex methods.

@ Sullivan’s approach is based on quasiconformal rigidity, and an
open-closed argument;
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I: Monotonicity of bifurcations

Theorem (Sullivan, Thurston, Milnor, Douady, Tsujii, .... (1980's))

As a increases, periodic points appear and never disappear.

All these proofs use complex methods.
@ Sullivan’s approach is based on quasiconformal rigidity, and an
open-closed argument;

@ Thurston and Milnor's approach is based on the uniqueness of
critically finite rational maps with given combinatorics;

@ Douady's approach is based on the fact that hyperbolic
components of the Mandelbrot can be parameterised by
multipliers and combinatorics of certain rays.

@ Tsujii’s approach considers some transfer operator.

All proofs are somewhat related and rely on complex tools and only
work when o = 3 is an even integer.
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: Tsujii's approach for proving monotonicity

Assume that f., has 0 as a periodic point of (minimal) period gq.

- Prove “Positive” transversality:

L0 |ee. 22 1
dc C=Cx __
DT 0) 2 D) ()

- Since f has minimum at 0, if x — fZ(x) has local max (min)
at 0 then DFI~Y (£, (0)) < O (resp. > 0).
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I: Tsujii's approach for proving monotonicity

Assume that f., has 0 as a periodic point of (minimal) period gq.

Prove “Positive” transversality:

SO0) ee. &1
dc C=Cx __
D) oy @

- Since f has minimum at 0, if x — fZ(x) has local max (min)
at 0 then DFI~Y (£, (0)) < O (resp. > 0).

@ By the pos. transversality inequality (3)

%ﬁ_—q(O)’C:C* <0 if I has a local maximum at 0,

%fcq(O)’c:C* >0 if fJ has a local minimum at 0.

- = (using real arguments) periodic orbits cannot be reborn.
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I: Tsujii's vs Douady-Hubbard approach

Compare with Douad-Hubbard approach:

e Douady-Hubbard: ¢ — A(c) is univalent in each hyperbolic
component of the family of quadratic maps.

e Tsujii's approach = ¢ — A(c) is increasing.

As mentioned, all those approaches require & = 3 to be an even
integer.

How to overcome this?
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: Monotonicity (with Levin and Shen)

With Genadi Levin and Weixiao Shen we use a transfer operator
approach to show monotonicity for many families.
@ For example, for many families of the form f.(x) = f(x) + ¢
and f\(x) = Af(x); f does not need to be of finite type.

@ Assume

e f., has a critical relation and
o f, has a polynomial-like extension f: U — V and
e some other mild assumptions.

Then our Main Theorem states:

either critical relation persists

Some lifting propery holds —> .. .
or positive transversality.

@ The above result holds for complex families.

@ Also results for transversal unfolding of parabolic periodic
points, see arXiv preprint Jan 2019.
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|: Partial monotonicity for x — |x|* + ¢

However, for our family the lifting property does NOT hold in
general. We only have the following partial result.
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Theorem (with Levin, Shen)
Let ¢_,¢, > 1 and consider the family of unimodal maps

£(x) = x|~ +c ifx<0
CIZU x +¢ ifx>0.

VL >1 3y > 1 so that ifi = iip--- € {—1,0, 1}Z+ is a g periodic
kneading sequence (q arbitrary) with

#{l1<j<aqij=-1} <L,
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|: Partial monotonicity for x — |x|* + ¢

However, for our family the lifting property does NOT hold in
general. We only have the following partial result.

Theorem (with Levin, Shen)

Let ¢_,¢, > 1 and consider the family of unimodal maps

£(x) = x|~ +c ifx<0
CIZU x +¢ ifx>0.

VL >1 3y > 1 so that ifi = iip--- € {—1,0, 1}Z+ is a g periodic
kneading sequence (q arbitrary) with

#{l1<j<aqij=-1} <L,

then V0_, 0, > Uy there is at most one c, € R for which the
kneading sequence of f. is equal toi.
In fact, one has positive transversality at c,.
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[I: Is there even period doubling?

So we do not know, when > a > 1 or when @ = 3 ¢ 2N,
whether the family f;: [-1,1] — [-1,1], t € [1, 2] defined by

t—1—t|x|* when x <0,
fr(x) = 4
«) {t—l—txﬁ when x > 0 *)

is ‘monotone’.
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[I: Is there even period doubling?

So we do not know, when > a > 1 or when @ = 3 ¢ 2N,
whether the family f;: [-1,1] — [-1,1], t € [1, 2] defined by

t—1—t|x|* when x <0,
fr(x) =
t—1—txP when x > 0
is ‘monotone’. However, at least the family is full:

Theorem
dtr <ty <tg<--- < ton <ty and e, > 0 so that for
@ t € (ton — €, tan), f; has only periodic orbits of periods < 2"

® t € (ton, ton + €,), f; also has a periodic orbit of period 2" 1.

Theorem

| A

When o« = 1 and n is even, then period doubling from period 2" to
period 2"+1 takes place when f2"(0) = O rather than when
multiplier at periodic attractor —1.

A\
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[l. Existence of period doubling limit

There exists ts, so that ;. has a periodic orbits of period 2" for
each n and no other periodic orbit.
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[l. Existence of period doubling limit

There exists ts, so that ;. has a periodic orbits of period 2" for
each n and no other periodic orbit.

@ From the numerics (and also from the results below), it seems
that the scaling of period doubling is quite different when
a < (B than in the quadratic case.

o 7 Feigenbaum-Coullet-Tresser-Sullivan-McMullen-Lyubich-
Avila-Lyubich renormalisation theory

@ 7 proofs based on rigorous numerical estimates.
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[l. Periodic doubling

bo

a0

a0 0 bo
dl by

Figure: f together with it renormalisation and its semi-extension.
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ll. Results for the Feigenbaum map f;_.

From now on we concentrate on f := f; _ in the case o = 1.

@ Then there exists a nested sequence [ak, bx] 20, k=0,1,...
so that £2* is a unimodal map from [ay, by] into itself.
o If we had o = 3 then

\ak] =b,~0"]0
where
6 = 2.502907875095892822283902873218...

(which is equal to an eigenvalue of the associated periodic
doubling renormalisation operator).

@ What happens when 1 = a < 37
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[Il. Superexponential scaling of by when 1 =a < (3

Notation: Assume wuy, v > 0, ug, vi — 0. We write

Uk ~ vy < uk/V} —1

ug = v <= 0 <liminfug/vk <limsup ug/vg < 0.
As before assume

—K_|x| forx<0
FO) = £(0) ~ { —K x?  forx>0

and let
K=K./K_.
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[Il. Superexponential scaling of by when 1 =a < (3

Theorem (Scaling laws)

The following scaling properties hold for by:

@ For large even values of k one has

bey1 ~  Aby,
Cok bk,

where \ € (0,1) is the root of the equation \® + \ = 1.
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Theorem (Scaling laws)

The following scaling properties hold for by:

@ For large even values of k one has

bey1 ~  Aby,
Cok bk,

where \ € (0,1) is the root of the equation \® + \ = 1.
@ For large odd values of k one has

—2

1
b1 ~ BFIKY AT

B B
G~ —B KA
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[Il. Superexponential scaling of by when 1 =a < (3

Theorem (Scaling laws)

The following scaling properties hold for by:
@ For large even values of k one has
bk+1 ~ Abkv
Cok bk, (5)
where \ € (0,1) is the root of the equation \® + \ = 1.
@ For large odd values of k one has
1
b1 ~ BFIKY AT
B+1 _B_ 1 (6)
ok~ =BT AIKSTIATAYEE

In particular, 3 C > 0 and p € (0,1) so that

’bk — ak\ < C,u,kﬁ,k > 0.
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V. Renormalisation limits

Theorem (Renormalization limits of R)

For k even we have

3

fzk(x) _J ok —sklx| + O(b;)  when x € [a, 0]
= 3

e — tyxP + O(bZ)  when x € [0, by]

where
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V. Rigidity

—2

_1
In fact 3© > 0's.t. 1/by ~ BF1K, ' exp(2X0© + o(1)).
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V. Rigidity

_ 1
In fact 30 > 0s.t. 1/by ~ S5 1K " exp(20 + o(1)).

Theorem (Complete invariants for C* universality)

Take two maps f,f € A(2%°). If h: Af — A is conjugacy then
@ h is Holder at 0,
o h is bi-Lipschitz at 0 <— © = 0,
o h is differentiable at 0 < © = and 8 = §.
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V. Rigidity

_ 1
In fact 30 > 0s.t. 1/by ~ S5 1K " exp(20 + o(1)).

Theorem (Complete invariants for C* universality)

Take two maps f,f € A(2%°). If h: Af — A is conjugacy then
@ h is Holder at 0,
o h is bi-Lipschitz at 0 <— © = 0,
o h is differentiable at 0 < © = and 8 = §.

Relationship with other work:

@ Marco Martens and Liviana Palmisano consider circle maps
with plateaus and with critical points at the boundary points
of the form x?, g € (1,2).

@ Gorbovickis and Yampolsky obtain renormamlisation for
unimodal maps with critical points ~ f(x) = f(c) + |x — c|?
for x = ¢ where 3 almost an integer.
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VI. Diffeomorphic extensions / Non-existence of Koebe
space

The first return map to 2 to [ak, bk] is a composition of f and the
map 2~ from a neighbourhood of f(0) which is almost linear.
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| \

Proof.
A Koebe space, but the first entry map from f(0) to [ak, bk] has a
big semi-extension (discussed below). O

v
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VI. Diffeomorphic extensions / Non-existence of Koebe
space

The first return map to 2 to [ak, bk] is a composition of f and the
map 2~ from a neighbourhood of f(0) which is almost linear.

Proof.

A Koebe space, but the first entry map from f(0) to [ak, bk] has a
big semi-extension (discussed below). O

v

Theorem (Absence of Koebe space)

For each T > 0 there exists x € R and k so that the maximal
semi-extension of the first entry map from x into [ak, bx] does not
contain a T-scaled neighbourhood of [ay, by].
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VII. Absence of wandering intervals

The map f does not have wandering intervals.
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VII. Absence of wandering intervals

The map f does not have wandering intervals.

Remarks:

@ We have not yet been able to prove absence of wandering
intervals for the general case when 1 < oo < 3. Our current
proof requires the scaling results from the earlier theorems.
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VII. Absence of wandering intervals

The map f does not have wandering intervals.

Remarks:
@ We have not yet been able to prove absence of wandering
intervals for the general case when 1 < oo < 3. Our current
proof requires the scaling results from the earlier theorems.

@ Absence of wandering intervals also unknown for circle
homeomorphisms which are local diffeomorphisms except at
two points xp, x1, where of the form

x = f(x0) + (x — x0)3 for x ~ xg,
x — f(x1) + (x — x1)Y/3 for x ~ x1.
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VIII. Renormalization limit of return map

What does a rescaled version of £2: [ak, bk] — [ak, bk] look like?

It is degenerate: By definition f(ax) = f(bk) and therefore

ay ~ —be and therefore ay /by — 0. (9)
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VIII. Renormalization limit of return map

What does a rescaled version of £2: [ak, bk] — [ak, bk] look like?

It is degenerate: By definition f(ax) = f(bk) and therefore

ay ~ —be and therefore ay /by — 0. (9)

Nevertheless it is very good:

F2°. [ak, bk] — [ak, bk] is a composition of
e f and

e a diffeomorphism ¢y : Jx — [ak, bk| so that ¢y tends to a
linear map in the C* topology.

Remark: In the quadratic case the analogue of ¢, converges to a
nonlinear map.
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VIII. Koebe space

In one-dimensional dynamics, usually one obtains non-linearity
bounds from Koebe space in the range:

Theorem (Koebe Theorem)

Let g: T — g(T) be a diffeomorphism with Sg < 0. Assume that
J C T is an interval so that

g(T) contains a T-scaled neighbourhood, i.e.

g(T) > (1+7)g(J).
Then for all x,y € J,

2 Dg(x) _ (1+7)
(77~ Dely) = 7
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VIIl. Bounding non-linearity due to semi-extensions

It turns out that ¢ does not have big Koebe space in the range.
So how to get almost linearity?
Since a =1,
e f|[ap,0] has a diffeomorphic extension to a map
f1: [ao, 6] — R.
o Let f, = f|[0, bo]
@ Can assume Sf; < 0.

Definition (Semi-extensions)

Let J be an interval and "|J be monotone. Then F: T — R is
called monotonic semi-extension of f"|J if

@ JC T and F|J=f"]J;
@ F=fjo---of;, where i, € {1,2} for k =1,...,n.
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IX. The semi-extensions

k even k+1 odd

ak?' ak dk €k bkb;( ;ak+1
; O : : :

€k+1 bk+1
: : \ 3/ ' :
dk41 bi+1 k+1

: b:ﬂ-l
Ak+1
Figure: f2k|lk and f2k+1|lk+1 when k is even and their semi-extensions.

Note that the points d, ek, a}, b}, are defined using the semi-extension

rather than dynamically.
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IX. ¢x: Jx — [ak, bx| has semi-extensions with huge Koebe

space

Theorem (Exponentially growing Koebe space for semi-extensions)

For any k > 0 there exists Tx with the following property. Let
Q) = 21 Jk — [ak, bk] be the first entry map when Ji > £(0).
Then
@ ¢k: Jx — |ak, bk] has a monotonic semi-extension F: T — R
such that F(T) is Tx-scaled neighbourhood of [ay, by].
@ T — 00 as k — oo.

@ Ty grows superexponentially with k, i.e. log o, grows
exponentially.

Proof: rather non-trivial bootstrap argument.

Corollary: ¢, tends to an affine map and so the previous theorem
follows.
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IX. Other first entry maps are not almost linear

Suppose that W is an interval which under some iterate
e first visits [0, by] for some k odd;
@ under the first return to [ag, bk] this interval visits
[0, bk] \ [0, bk+1] @ number of times;
@ then the interval makes a first visit into [0, bx2] and then the
process repeats (replacing k — k + 2).
The resulting map " is extremely non-linear and |f"(W)| << |W/|.

P bk+1
Ak 0 bk+2 by

Figure: £2°([0, b] and £2°7|[0, byy2] when k is odd.
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@ Our proof of absence of wandering intervals is rather unusual.
It relies on the Koebe space of the semi-extensions growing
super-exponentially. Other proofs we tried were unsuccessful.
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Our proof of absence of wandering intervals is rather unusual.
It relies on the Koebe space of the semi-extensions growing
super-exponentially. Other proofs we tried were unsuccessful.
7 definite Koebe space, even when 1 = a < .

When 1 < a < 8 semi-extensions do not make sense.
Nevertheless we think that b, decays super-exponentially.
Presumably, as in the work of Martens-Palmisano, the set

© = const defines a codimension-one submanifold of the
space of co-renormalizable period doubling maps.

However, we don't even know the latter space forms a
codimension-one submanifold in the full space of asymmetric
maps with x resp. xP singularities.

Presumably there exists a unique parameter ¢ for which

|x|*+ ¢ when x <0,
fe(x) = 10
(x) {xﬁ +c¢ whenx>0 (10)

is an oo-renormalizable period doubling map.
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