Complex dynamics: the intriguing case of wandering domains

Gwyneth Stallard The Open University

Joint work with Anna Miriam Benini, Vasiliki Evdoridou, Nuria Fagella and Phil Rippon

> Barcelona March 2019

 $f: \mathbb{C} \to \mathbb{C}$ is analytic

 $f:\mathbb{C}\to\mathbb{C}$ is analytic

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

 $f:\mathbb{C}\to\mathbb{C}$ is analytic

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

The Fatou set is *open* and $z \in F(f) \iff f(z) \in F(f)$.

 $f:\mathbb{C}\to\mathbb{C}$ is analytic

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

The Fatou set is *open* and $z \in F(f) \iff f(z) \in F(f)$.

Definition

The Julia set (or chaotic set) is

$$J(f) = \mathbb{C} \setminus F(f).$$

Let U be a component of the Fatou set (a Fatou component),

• *U* is **periodic** with period *p* if $U_p = U$ and $U_n \neq U$ for $1 \leq n < p$.

• *U* is **periodic** with period *p* if $U_p = U$ and $U_n \neq U$ for $1 \leq n < p$.

• *U* is **pre-periodic** if U_m is periodic for some $m \in \mathbb{N}$.

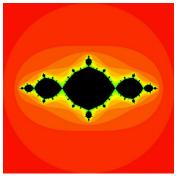
- *U* is **periodic** with period *p* if $U_p = U$ and $U_n \neq U$ for $1 \leq n < p$.
- *U* is **pre-periodic** if U_m is periodic for some $m \in \mathbb{N}$.
- *U* is a wandering domain if $U_m \neq U_n$ for all $m \neq n$.

- *U* is **periodic** with period *p* if $U_p = U$ and $U_n \neq U$ for $1 \leq n < p$.
- *U* is **pre-periodic** if U_m is periodic for some $m \in \mathbb{N}$.
- *U* is a wandering domain if $U_m \neq U_n$ for all $m \neq n$.

Periodic Fatou components are well understood and there is a classification essentially due to Fatou and Cremer (1920s).

Type 1: U is an **attracting basin**

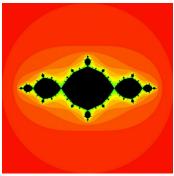
Type 1: U is an **attracting basin**



$$g(z) = z^2 - 1$$

 $f = g^2$ has an attracting basin

Type 1: U is an attracting basin



$$g(z) = z^2 - 1$$

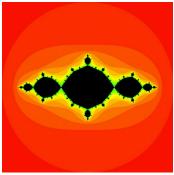
 $f = g^2$ has an attracting basin

• *U* contains an attracting fixed point *z*₀:

$$f(z_0) = z_0, \quad |f'(z_0)| < 1$$

・ロット (雪) (日) (日)

Type 1: U is an attracting basin



$$g(z) = z^2 - 1$$

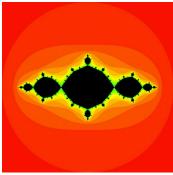
 $f = g^2$ has an attracting basin

• *U* contains an attracting fixed point *z*₀:

$$f(z_0) = z_0, \quad |f'(z_0)| < 1$$

•
$$f^n(z) \rightarrow z_0$$
 for $z \in U$

Type 1: U is an attracting basin



$$g(z) = z^2 - 1$$

 $f = g^2$ has an attracting basin

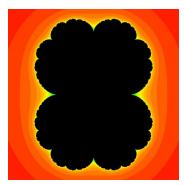
- *U* contains an attracting fixed point *z*₀:
 - $f(z_0) = z_0, \quad |f'(z_0)| < 1$

・ コット (雪) (小田) (コット 日)

- $f^n(z) \rightarrow z_0$ for $z \in U$
- *U* is super-attracting if $f'(z_0) = 0$

Type 2: *U* is a **parabolic basin**

Type 2: *U* is a **parabolic basin**



 $f(z) = z^2 + 0.25$

Type 2: *U* is a **parabolic basin**

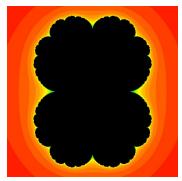


 $f(z) = z^2 + 0.25$

∂U contains a parabolic fixed point z₀:

$$f(z_0) = z_0, \quad f'(z_0) = 1$$

Type 2: *U* is a **parabolic basin**



 $f(z) = z^2 + 0.25$

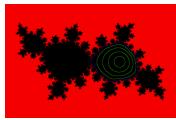
- ∂U contains a parabolic fixed point z₀:
 - $f(z_0) = z_0, \quad f'(z_0) = 1$

・ コット (雪) (小田) (コット 日)

•
$$f^n(z) \rightarrow z_0$$
 for $z \in U$

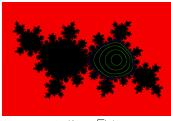
Type 3: *U* is a **Siegel disc**

Type 3: *U* is a **Siegel disc**



$$f(z) = e^{2\pi i(1-\sqrt{5})/2} z(z-1)$$

Type 3: *U* is a **Siegel disc**



$$f(z_0)=z_0, \quad f'(z_0)=e^{2\pi i\theta},$$

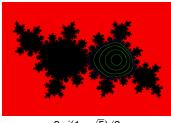
・ロット (雪) ・ (日) ・ (日)

э

 $\boldsymbol{\theta}$ is irrational

$$f(z) = e^{2\pi i(1-\sqrt{5})/2}z(z-1)$$

Type 3: *U* is a **Siegel disc**



$$f(z) = e^{2\pi i(1-\sqrt{5})/2} z(z-1)$$

• *U* contains a fixed point z_0 :

$$f(z_0)=z_0, \quad f'(z_0)=e^{2\pi i\theta},$$

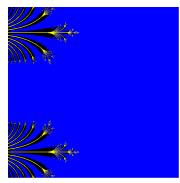
θ is irrational

f : *U* → *U* is conjugate to an irrational rotation of the disc

イロト 不良 とくほう 不良 とうほ

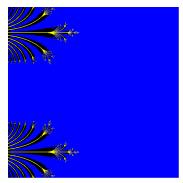
Type 4: *U* is a **Baker domain**

Type 4: *U* is a **Baker domain**



 $f(z) = z + 1 + e^{-z}$

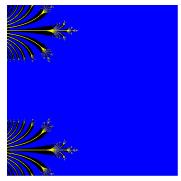
Type 4: *U* is a **Baker domain**



 $f(z) = z + 1 + e^{-z}$

 For z ∈ U, fⁿ(z) tends to an essential singularity

Type 4: U is a **Baker domain**



 $f(z) = z + 1 + e^{-z}$

- For z ∈ U, fⁿ(z) tends to an essential singularity
- This type cannot occur for polynomials

The existence of wandering domains

Theorem (Sullivan, 1982)

If f is rational, then f has no wandering domains.

The existence of wandering domains

Theorem (Sullivan, 1982)

If f is rational, then f has no wandering domains.

Corollary

There is a complete classification of the behaviour in Fatou components of rational functions

The existence of wandering domains

Theorem (Sullivan, 1982)

If f is rational, then f has no wandering domains.

Corollary

There is a complete classification of the behaviour in Fatou components of rational functions

Wandering domains *do* exist for transcendental entire functions, and are not well understood.

• Herman (1984) gave simple examples of functions with simply connected wandering domains

• Herman (1984) gave simple examples of functions with simply connected wandering domains e.g.

$$f(z) = z - 1 + e^{-z} + 2\pi i$$

has a wandering attracting basin.

• Herman (1984) gave simple examples of functions with simply connected wandering domains e.g.

$$f(z) = z - 1 + e^{-z} + 2\pi i$$

has a wandering attracting basin.

• Herman (1984) gave simple examples of functions with simply connected wandering domains e.g.

$$f(z) = z - 1 + e^{-z} + 2\pi i$$

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト ・ 国

has a wandering attracting basin.

• Baker gave the first example of a wandering domain.

• Herman (1984) gave simple examples of functions with simply connected wandering domains e.g.

$$f(z) = z - 1 + e^{-z} + 2\pi i$$

has a wandering attracting basin.

- Baker gave the first example of a wandering domain.
 - In 1963 he constructed an infinite product *f* and a nested sequence of annuli *A_n* tending to infinity with *f*(*A_n*) ⊂ *A_{n+1}*.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Early examples of wandering domains

• Herman (1984) gave simple examples of functions with simply connected wandering domains e.g.

$$f(z) = z - 1 + e^{-z} + 2\pi i$$

has a wandering attracting basin.

- Baker gave the first example of a wandering domain.
 - In 1963 he constructed an infinite product *f* and a nested sequence of annuli *A_n* tending to infinity with *f*(*A_n*) ⊂ *A_{n+1}*.
 - In 1976 he showed that these annuli belong to distinct Fatou components (multiply connected wandering domains).

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

• U is a wandering domain

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

・ コット (雪) (小田) (コット 日)

- U is a wandering domain
- U_{n+1} surrounds U_n , for large n
- $U_n \to \infty$ as $n \to \infty$.

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

- U is a wandering domain
- U_{n+1} surrounds U_n , for large n
- $U_n \to \infty$ as $n \to \infty$.

Theorem (Zheng, 2006)

If U is a multiply connected wandering domain then there exist sequences (r_n) and (R_n) such that, for large n,

 $U_n \supset \{z : r_n \le |z| \le R_n\}$

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

- U is a wandering domain
- U_{n+1} surrounds U_n , for large n
- $U_n \to \infty$ as $n \to \infty$.

Theorem (Zheng, 2006)

If U is a multiply connected wandering domain then there exist sequences (r_n) and (R_n) such that, for large n,

$$U_n \supset \{z: r_n \le |z| \le R_n\}$$

and

$$R_n/r_n \to \infty$$
 as $n \to \infty$.

Theorem (Bergweiler, Rippon and Stallard, 2013)

If U is a multiply connected wandering domain then

• for large $n \in \mathbb{N}$, there is an absorbing annulus

$$B_n = A(r_n^{a_n}, r_n^{b_n}) \subset U_n$$

with $\liminf_{n\to\infty} b_n/a_n > 1$

Theorem (Bergweiler, Rippon and Stallard, 2013)

If U is a multiply connected wandering domain then

• for large $n \in \mathbb{N}$, there is an absorbing annulus

$$B_n = A(r_n^{a_n}, r_n^{b_n}) \subset U_n$$

with $\liminf_{n\to\infty} b_n/a_n > 1$ such that, for every compact set $C \subset U$,

 $f^n(C) \subset B_n$ for $n \ge N(C)$.

Theorem (Bergweiler, Rippon and Stallard, 2013)

If U is a multiply connected wandering domain then

• for large $n \in \mathbb{N}$, there is an absorbing annulus

$$B_n = A(r_n^{a_n}, r_n^{b_n}) \subset U_n$$

with $\liminf_{n\to\infty} b_n/a_n > 1$ such that, for every compact set $C \subset U$,

 $f^n(C) \subset B_n$ for $n \ge N(C)$.

イロト 不良 とくほ とくほう 二日

• f behaves like a large degree monomial inside B_n.

Theorem (Bergweiler, Rippon and Stallard, 2013)

If U is a multiply connected wandering domain then

• for large $n \in \mathbb{N}$, there is an absorbing annulus

$$B_n = A(r_n^{a_n}, r_n^{b_n}) \subset U_n$$

with $\liminf_{n\to\infty} b_n/a_n > 1$ such that, for every compact set $C \subset U$,

 $f^n(C) \subset B_n$ for $n \ge N(C)$.

・ コット (雪) (小田) (コット 日)

• f behaves like a large degree monomial inside B_n.

This led to progress on a longstanding question as to whether $f \circ g = g \circ f$ implies J(f) = J(g) (Benini, Rippon and Stallard).

Classifying simply connected wandering domains EPSRC funded project

Classifying simply connected wandering domains EPSRC funded project

Gwyneth Stallard

Phil Rippon

Vasso Evdoridou

Nuria Fagella

Anna Benini

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

There are three possible types of orbits of a wandering domain U containing a point z.

There are three possible types of orbits of a wandering domain U containing a point z.

• Escaping $(f^n(z) \to \infty)$

There are three possible types of orbits of a wandering domain U containing a point z.

- Escaping $(f^n(z) \to \infty)$
 - most known examples are of this type and are escaping versions of periodic components.

(日) (日) (日) (日) (日) (日) (日)

There are three possible types of orbits of a wandering domain U containing a point z.

- Escaping $(f^n(z) \to \infty)$
 - most known examples are of this type and are escaping versions of periodic components.

• **Oscillating** ((*fⁿ*(*z*)) has bounded and unbounded subsequences)

There are three possible types of orbits of a wandering domain U containing a point z.

- Escaping $(f^n(z) \to \infty)$
 - most known examples are of this type and are escaping versions of periodic components.
- **Oscillating** ((*fⁿ*(*z*)) has bounded and unbounded subsequences)
 - Eremenko and Lyubich (1987) constructed examples using approximation theory
 - Bishop (2015) constructed examples using quasiconformal folding

There are three possible types of orbits of a wandering domain U containing a point z.

- Escaping $(f^n(z) \to \infty)$
 - most known examples are of this type and are escaping versions of periodic components.
- **Oscillating** ((*fⁿ*(*z*)) has bounded and unbounded subsequences)
 - Eremenko and Lyubich (1987) constructed examples using approximation theory
 - Bishop (2015) constructed examples using quasiconformal folding

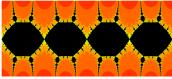
• **Bounded** ((*fⁿ*(*z*)) is bounded)

There are three possible types of orbits of a wandering domain U containing a point z.

- Escaping $(f^n(z) \to \infty)$
 - most known examples are of this type and are escaping versions of periodic components.
- **Oscillating** ((*fⁿ*(*z*)) has bounded and unbounded subsequences)
 - Eremenko and Lyubich (1987) constructed examples using approximation theory
 - Bishop (2015) constructed examples using quasiconformal folding

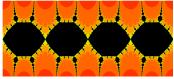
- **Bounded** ((*fⁿ*(*z*)) is bounded)
 - Not known if these can exist

Wandering attracting domain



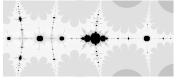
 $f(z)=z+\sin z+2\pi$

Wandering attracting domain



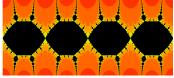
 $f(z) = z + \sin z + 2\pi$

Wandering parabolic domain



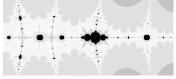
 $f(z)=z\cos z+2\pi$

Wandering attracting domain



 $f(z)=z+\sin z+2\pi$

Wandering parabolic domain



 $f(z)=z\cos z+2\pi$

・ コット (雪) (小田) (コット 日)

Answer No - everything seems possible!

Theorem

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

Theorem

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.

Theorem

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

イロト 不良 とくほ とくほう 二日

- 1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.
- 2 *U* is semi-contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to c(z, w) > 0.

Theorem

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

- 1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.
- 2 *U* is semi-contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to c(z, w) > 0.
- 3 *U* is eventually isometric: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ is eventually constant.

・ コット (雪) (小田) (コット 日)

Theorem

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

- 1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.
- 2 *U* is semi-contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to c(z, w) > 0.
- 3 *U* is eventually isometric: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ is eventually constant.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

A wandering domain that is the lift of an attracting basin / parabolic basin / Siegel disc is

Theorem

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

- 1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.
- 2 *U* is semi-contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to c(z, w) > 0.
- 3 *U* is eventually isometric: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ is eventually constant.

A wandering domain that is the lift of an attracting basin / parabolic basin / Siegel disc is contracting

Theorem

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

- 1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.
- 2 *U* is semi-contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to c(z, w) > 0.
- 3 *U* is eventually isometric: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ is eventually constant.

A wandering domain that is the lift of an attracting basin / parabolic basin / Siegel disc is contracting / contracting

Theorem

Let U be a simply connected wandering domain and suppose $z, w \in U$ have distinct orbits. Then there are three possibilities.

- 1 *U* is contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to 0.
- 2 *U* is semi-contracting: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ decreases to c(z, w) > 0.
- 3 *U* is eventually isometric: for all such pairs $z, w \in U$, $\rho_{U_n}(f^n(z), f^n(w))$ is eventually constant.

A wandering domain that is the lift of an attracting basin / parabolic basin / Siegel disc is contracting / contracting / isometric.

• Pick a base point $z_0 \in U$.

- Pick a base point $z_0 \in U$.
- Let $\phi_n : U_n \to \mathbb{D}$ denote a Riemann mapping with $\phi(f^n(z_0)) = 0.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Pick a base point $z_0 \in U$.
- Let $\phi_n : U_n \to \mathbb{D}$ denote a Riemann mapping with $\phi(f^n(z_0)) = 0$.
- Consider the sequence of inner functions $g_n = \phi_n f \phi_{n-1}^{-1}$.

- ロト・日本・日本・日本・日本・日本

- Pick a base point $z_0 \in U$.
- Let $\phi_n : U_n \to \mathbb{D}$ denote a Riemann mapping with $\phi(f^n(z_0)) = 0$.
- Consider the sequence of inner functions $g_n = \phi_n f \phi_{n-1}^{-1}$.
- Show that the rate of contraction depends on the values of $g'_n(0)$ using techniques of Beardon and Carne.

- Pick a base point $z_0 \in U$.
- Let $\phi_n : U_n \to \mathbb{D}$ denote a Riemann mapping with $\phi(f^n(z_0)) = 0$.
- Consider the sequence of inner functions $g_n = \phi_n f \phi_{n-1}^{-1}$.
- Show that the rate of contraction depends on the values of g'_n(0) - using techniques of Beardon and Carne.

$$\sum_{n=0}^{\infty} (1 - |g'_n(0)|) = \infty \iff g_n(w) \to 0 \text{ as } n \to \infty$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

for all $w \in \mathbb{D}$.

Contracting wandering domains

Recall U is contracting if $\sum_{n=0}^{\infty} (1 - |g'_n(0)|) = \infty$.

Recall *U* is **contracting** if $\sum_{n=0}^{\infty} (1 - |g'_n(0)|) = \infty$. This implies that, for $w \in \mathbb{D}$, $g_n(w) \to 0$ as $n \to \infty$.

This implies that, for $w \in \mathbb{D}$, $g_n(w) \to 0$ as $n \to \infty$.

• U is strongly contracting if $\limsup \frac{1}{n} \sum_{k=1}^{n} |g'_k(0)| = d < 1$

- ロト・日本・日本・日本・日本・日本

This implies that, for $w \in \mathbb{D}$, $g_n(w) \to 0$ as $n \to \infty$.

- U is strongly contracting if $\limsup \frac{1}{n} \sum_{k=1}^{n} |g'_k(0)| = d < 1$
 - This implies that, for $w \in \mathbb{D}$, $|g_n(w)| \le (d + \epsilon)^n$, for large *n*.

This implies that, for $w \in \mathbb{D}$, $g_n(w) \to 0$ as $n \to \infty$.

- U is strongly contracting if $\limsup \frac{1}{n} \sum_{k=1}^{n} |g'_k(0)| = d < 1$
 - This implies that, for $w \in \mathbb{D}$, $|g_n(w)| \le (d + \epsilon)^n$, for large *n*.
 - A wandering domain that is the lift of an attracting basin is strongly contracting

This implies that, for $w \in \mathbb{D}$, $g_n(w) \to 0$ as $n \to \infty$.

- U is strongly contracting if $\limsup \frac{1}{n} \sum_{k=1}^{n} |g'_k(0)| = d < 1$
 - This implies that, for $w \in \mathbb{D}$, $|g_n(w)| \le (d + \epsilon)^n$, for large *n*.
 - A wandering domain that is the lift of an attracting basin is strongly contracting
 - A wandering domain that is the lift of a parabolic basin is *not* strongly contracting.

This implies that, for $w \in \mathbb{D}$, $g_n(w) \to 0$ as $n \to \infty$.

- U is strongly contracting if $\limsup \frac{1}{n} \sum_{k=1}^{n} |g'_k(0)| = d < 1$
 - This implies that, for $w \in \mathbb{D}$, $|g_n(w)| \le (d + \epsilon)^n$, for large *n*.
 - A wandering domain that is the lift of an attracting basin is strongly contracting
 - A wandering domain that is the lift of a parabolic basin is *not* strongly contracting.

• *U* is super-contracting if $\lim \frac{1}{n} \sum_{k=1}^{n} |g'_k(0)| = 0$

This implies that, for $w \in \mathbb{D}$, $g_n(w) \to 0$ as $n \to \infty$.

- U is strongly contracting if $\limsup \frac{1}{n} \sum_{k=1}^{n} |g'_k(0)| = d < 1$
 - This implies that, for $w \in \mathbb{D}$, $|g_n(w)| \le (d + \epsilon)^n$, for large *n*.
 - A wandering domain that is the lift of an attracting basin is strongly contracting
 - A wandering domain that is the lift of a parabolic basin is *not* strongly contracting.
- *U* is super-contracting if $\lim \frac{1}{n} \sum_{k=1}^{n} |g'_k(0)| = 0$
 - This implies that, for $w \in \mathbb{D}$, $d \in (0, 1)$, $|g_n(w)| \le d^n$, for large *n*.

This implies that, for $w \in \mathbb{D}$, $g_n(w) \to 0$ as $n \to \infty$.

- U is strongly contracting if $\limsup \frac{1}{n} \sum_{k=1}^{n} |g'_k(0)| = d < 1$
 - This implies that, for $w \in \mathbb{D}$, $|g_n(w)| \le (d + \epsilon)^n$, for large *n*.
 - A wandering domain that is the lift of an attracting basin is strongly contracting
 - A wandering domain that is the lift of a parabolic basin is *not* strongly contracting.
- *U* is super-contracting if $\lim \frac{1}{n} \sum_{k=1}^{n} |g'_k(0)| = 0$
 - This implies that, for $w \in \mathbb{D}$, $d \in (0, 1)$, $|g_n(w)| \le d^n$, for large *n*.
 - A wandering domain that is the lift of a super-attracting basin is super-contracting.

Theorem

Let U be a simply connected wandering domain. Then there are three possibilities.

Theorem

Let U be a simply connected wandering domain. Then there are three possibilities.

A Away For all $z \in U$, $f^n(z)$ stays away from ∂U_n .

Theorem

Let U be a simply connected wandering domain. Then there are three possibilities.

- A Away For all $z \in U$, $f^n(z)$ stays away from ∂U_n .
- B **Bungee** For all $z \in U$, there is a subsequence $f^{n_k}(z)$ which converges to ∂U_{n_k} and a subsequence which stays away.

Theorem

Let U be a simply connected wandering domain. Then there are three possibilities.

- A Away For all $z \in U$, $f^n(z)$ stays away from ∂U_n .
- B **Bungee** For all $z \in U$, there is a subsequence $f^{n_k}(z)$ which converges to ∂U_{n_k} and a subsequence which stays away.

イロト 不良 とくほう 不良 とうほ

C Converges For all $z \in U$, $f^n(z)$ converges to ∂U_n .

Theorem

Let U be a simply connected wandering domain. Then there are three possibilities.

- A Away For all $z \in U$, $f^n(z)$ stays away from ∂U_n .
- B **Bungee** For all $z \in U$, there is a subsequence $f^{n_k}(z)$ which converges to ∂U_{n_k} and a subsequence which stays away.
- **C** Converges For all $z \in U$, $f^n(z)$ converges to ∂U_n .

Definition

We say $f^n(z)$ converges to the boundary if

$$\Delta_n \rho_{U_n}(f^n(z)) \to \infty \text{ as } n \to \infty,$$

Theorem

Let U be a simply connected wandering domain. Then there are three possibilities.

- A Away For all $z \in U$, $f^n(z)$ stays away from ∂U_n .
- B **Bungee** For all $z \in U$, there is a subsequence $f^{n_k}(z)$ which converges to ∂U_{n_k} and a subsequence which stays away.
- **C** Converges For all $z \in U$, $f^n(z)$ converges to ∂U_n .

Definition

We say $f^n(z)$ converges to the boundary if

$$\Delta_n \rho_{U_n}(f^n(z)) \to \infty \text{ as } n \to \infty,$$

 $\Delta_n = \sup\{\frac{d}{1+d} : d = \operatorname{diam} D, D \text{ is a disc contained in } U_n\}.$

• These two theorems together give 9 classes of simply connected wandering domains.

- These two theorems together give 9 classes of simply connected wandering domains.
- All previously known examples of escaping wandering domains belong to just 3 of these classes.

- These two theorems together give 9 classes of simply connected wandering domains.
- All previously known examples of escaping wandering domains belong to just 3 of these classes.
- We give a new technique which allows us to construct examples of all 9 possible types of bounded escaping wandering domains.

- These two theorems together give 9 classes of simply connected wandering domains.
- All previously known examples of escaping wandering domains belong to just 3 of these classes.
- We give a new technique which allows us to construct examples of all 9 possible types of bounded escaping wandering domains.

(日)、(間)、(目)、(日)、(日)

• Vasso will tell you about this tomorrow!