Complex dynamics: the intriguing case of
wandering domains

Gwyneth Stallard
The Open University

Joint work with Anna Miriam Benini, Vasiliki Evdoridou, Nuria Fagella and Phil
Rippon

Barcelona
March 2019

9



Basic definitions

f. C — Cis analytic

9



Basic definitions

f. C — Cis analytic

The Fatou set (or stable set) is

F(f) = {z: (f") is equicontinuous in some neighbourhood of z}.

e)



Basic definitions

f. C — Cis analytic

Definition
The Fatou set (or stable set) is

F(f) = {z: (f") is equicontinuous in some neighbourhood of z}.

The Fatou setis openand z € F(f) < f(z) € F(f).

e)



Basic definitions

f. C — Cis analytic

Definition
The Fatou set (or stable set) is

F(f) = {z: (f") is equicontinuous in some neighbourhood of z}.

The Fatou setis openand z € F(f) < f(z) € F(f).

Definition
The Julia set (or chaotic set) is

J(f) = C\ F(f).
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Components of the Fatou set

Let U be a component of the Fatou set (a Fatou component),
and let U, denote the Fatou component containing f"(U).
@ U is periodic with period p if U, = U and U, # U for
1<n<p.
@ U is pre-periodic if Uy, is periodic for some m € N.
@ Uis a wandering domain if Uy, # U, for all m # n.

Periodic Fatou components are well understood and there is a
classification essentially due to Fatou and Cremer (1920s).
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Classification of invariant Fatou components

Attracting basin

Type 1: U is an attracting basin

@ U contains an attracting
fixed point zy:

f(z0) = 20, |f(20)] <1

@ f(z) »zgforze U

@ U is super-attracting if
f'(z0) =0

g(z) =22 -1
f = g2 has an attracting
basin

Q
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Classification of invariant Fatou components

Siegel disc

Type 3: U is a Siegel disc

@ U contains a fixed point zy:
f(z0) = 20, f(20) =€,

@ is irrational

f(z) = 27(1-V5)/2z(z — 1)

e



Classification of invariant Fatou components

Siegel disc

Type 3: U is a Siegel disc

@ U contains a fixed point zy:

f(z0) = 20, F(20) = >,

@ is irrational

@ f: U — Uis conjugate to
. an irrational rotation of the
f(2) = 71=V8)/22(z — 1) disc
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Type 4: U is a Baker domain
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Classification of invariant Fatou components

Baker domain

Type 4: U is a Baker domain

@ Forz e U, f"(z) tends to
an essential singularity

@ This type cannot occur for
polynomials

(O



The existence of wandering domains

Theorem (Sullivan, 1982)

If f is rational, then f has no wandering domains.

e)



The existence of wandering domains

Theorem (Sullivan, 1982)

If f is rational, then f has no wandering domains.

Corollary

There is a complete classification of the behaviour in Fatou
components of rational functions

e)



The existence of wandering domains

Theorem (Sullivan, 1982)

If f is rational, then f has no wandering domains.

Corollary

There is a complete classification of the behaviour in Fatou
components of rational functions

Wandering domains do exist for transcendental entire functions,
and are not well understood.
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Early examples of wandering domains

@ Herman (1984) gave simple examples of functions with
simply connected wandering domains e.g.

f(zy=z—1+e*+2xi

has a wandering attracting basin.
@ Baker gave the first example of a wandering domain.
® In 1963 he constructed an infinite product f and a nested

sequence of annuli A, tending to infinity with f(A;) C Api1.

® In 1976 he showed that these annuli belong to distinct
Fatou components (multiply connected wandering
domains).
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@ U is a wandering domain

e)



Multiply connected wandering domains

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

@ U is a wandering domain
@ U, surrounds Uy, for large n
@ U, — ocoasn— oo.

e)



Multiply connected wandering domains

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

@ U is a wandering domain
@ U, surrounds Uy, for large n
@ U, — ocoasn— oo.

Theorem (Zheng, 2006)

If U is a multiply connected wandering domain then there exist
sequences (r,) and (R,) such that, for large n,

Upo{z:m<|z| <Rp}

®



Multiply connected wandering domains

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

@ U is a wandering domain
@ U, surrounds Uy, for large n
@ U, — ocoasn— oo.

Theorem (Zheng, 2006)

If U is a multiply connected wandering domain then there exist
sequences (r,) and (R,) such that, for large n,

Upo{z:m<|z| <Rp}

and o
Rn/rh — o0 asn— oo. -



Dynamical behaviour in multiply connected wandering
domains

Theorem (Bergweiler, Rippon and Stallard, 2013)

If U is a multiply connected wandering domain then

@ forlarge n € N, there is an absorbing annulus
B, = A(réd", rbr) c U,
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Dynamical behaviour in multiply connected wandering
domains

Theorem (Bergweiler, Rippon and Stallard, 2013)

If U is a multiply connected wandering domain then

@ forlarge n € N, there is an absorbing annulus
B, = A(réd", rbr) c U,

with liminf,_,o bn/an > 1 such that, for every compact set
ccu,
f’(C) c Bp forn> N(C).

@ f behaves like a large degree monomial inside B,.

This led to progress on a longstanding question as to whether
fog=go fimplies J(f) = J(g) (Benini, Rippon and Stallard). O
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Background - orbits of simply connected wandering

domains

There are three possible types of orbits of a wandering domain
U containing a point z.

@ Escaping (f"(z) — o0)
* most known examples are of this type and are escaping
versions of periodic components.

@ Oscillating ((f"(z)) has bounded and unbounded
subsequences)
e Eremenko and Lyubich (1987) constructed examples using
approximation theory
® Bishop (2015) constructed examples using quasiconformal
folding
@ Bounded ((f"(z)) is bounded)
* Not known if these can exist

e



Escaping wandering domains

Question Are all escaping wandering domains escaping
versions of periodic Fatou components?
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Escaping wandering domains

Question Are all escaping wandering domains escaping
versions of periodic Fatou components?

Wandering attracting domain Wandering parabolic domain
i i i : ’ :.‘
o : Y ® * il
' 3
f(z)=z+sinz+2r f(z) = zcosz + 27

Answer No - everything seems possible!

e)
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Classifying simply connected wandering domains

Hyperbolic contraction

Let U be a simply connected wandering domain and suppose
z,w € U have distinct orbits. Then there are three possibilities.

U is contracting: for all such pairs z,w € U,
pu,(f"(2), f’(w)) decreases to 0.

U is semi-contracting: for all such pairs z,w € U,
pu,(f"(2), f"(w)) decreases to c(z, w) > 0.

U is eventually isometric: for all such pairs z,w € U,
pu,(f"(2), f(w)) is eventually constant.

A wandering domain that is the lift of an
attracting basin / parabolic basin / Siegel disc is
contracting / contracting / isometric.

(O
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Proof of hyperbolic contraction classification

@ Pick a base point zy € U.

@ Let ¢p : Uy — D denote a Riemann mapping with
¢(f"(20)) = 0.

@ Consider the sequence of inner functions g, = ¢nf¢;j1.

@ Show that the rate of contraction depends on the values of
g,(0) - using techniques of Beardon and Carne.

> (1-195(0)]) = 00 <= gn(w) = 0asn— oo

n=0

for all w € D.
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Contracting wandering domains

Recall U is contracting if >~.° (1 — |g,(0)|) = oc.
This implies that, for w € D, gn(w) — 0 as n — oc.
@ U is strongly contracting if lim sup 15 > ket 19k(0)] =d < 1

® This implies that, for w € D, |gn(w)| < (d + €)", for large n.

* A wandering domain that is the lift of an attracting basin is
strongly contracting

* A wandering domain that is the lift of a parabolic basin is
not strongly contracting.

@ U is super-contracting if lim 1 3"/ (g, (0)| =0

® This implies that, for w e D, d € (0, 1), |gn(w)| < d", for
large n.

e A wandering domain that is the lift of a super-attracting
basin is super-contracting.

e)
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Classifying simply connected wandering domains

Distance from boundary

Let U be a simply connected wandering domain. Then there
are three possibilities.
A Away For all z € U, f"(z) stays away from OU,.

B Bungee For all z € U, there is a subsequence f"<(z) which
converges to 0U,, and a subsequence which stays away.

C Converges For all z € U, f"(z) converges to dU,.

Definition
We say f(z) converges to the boundary if

Apnpy,(f'(2)) = oo as n — oo,

NAp = sup{“%d : d =diamD, D is a disc contained in Up}.
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Examples of simply connected wandering domains

@ These two theorems together give 9 classes of simply
connected wandering domains.

@ All previously known examples of escaping wandering
domains belong to just 3 of these classes.

@ We give a new technique which allows us to construct

examples of all 9 possible types of bounded escaping
wandering domains.

@ Vasso will tell you about this tomorrow!
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