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Basic definitions

f : C→ C is analytic

Definition

The Fatou set (or stable set) is

F (f ) = {z : (f n) is equicontinuous in some neighbourhood of z}.

The Fatou set is open and z ∈ F (f ) ⇐⇒ f (z) ∈ F (f ).

Definition

The Julia set (or chaotic set) is

J(f ) = C \ F (f ).
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Components of the Fatou set

Let U be a component of the Fatou set (a Fatou component),

and let Un denote the Fatou component containing f n(U).

U is periodic with period p if Up = U and Un 6= U for
1 ≤ n < p.
U is pre-periodic if Um is periodic for some m ∈ N.
U is a wandering domain if Um 6= Un for all m 6= n.

Periodic Fatou components are well understood and there is a
classification essentially due to Fatou and Cremer (1920s).
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Classification of invariant Fatou components
Attracting basin

Type 1: U is an attracting basin

g(z) = z2 − 1
f = g2 has an attracting

basin

U contains an attracting
fixed point z0:

f (z0) = z0, |f ′(z0)| < 1

f n(z)→ z0 for z ∈ U
U is super-attracting if
f ′(z0) = 0
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Classification of invariant Fatou components
Parabolic basin

Type 2: U is a parabolic basin

f (z) = z2 + 0.25

∂U contains a parabolic
fixed point z0:

f (z0) = z0, f ′(z0) = 1

f n(z)→ z0 for z ∈ U
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Classification of invariant Fatou components
Siegel disc

Type 3: U is a Siegel disc

f (z) = e2πi(1−
√

5)/2z(z − 1)

U contains a fixed point z0:

f (z0) = z0, f ′(z0) = e2πiθ,

θ is irrational
f : U → U is conjugate to
an irrational rotation of the
disc
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Classification of invariant Fatou components
Baker domain

Type 4: U is a Baker domain

f (z) = z + 1 + e−z

For z ∈ U, f n(z) tends to
an essential singularity
This type cannot occur for
polynomials
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The existence of wandering domains

Theorem (Sullivan, 1982)

If f is rational, then f has no wandering domains.

Corollary

There is a complete classification of the behaviour in Fatou
components of rational functions

Wandering domains do exist for transcendental entire functions,
and are not well understood.
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Early examples of wandering domains

Herman (1984) gave simple examples of functions with
simply connected wandering domains

e.g.

f (z) = z − 1 + e−z + 2πi

has a wandering attracting basin.
Baker gave the first example of a wandering domain.
• In 1963 he constructed an infinite product f and a nested

sequence of annuli An tending to infinity with f (An) ⊂ An+1.
• In 1976 he showed that these annuli belong to distinct

Fatou components (multiply connected wandering
domains).
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Multiply connected wandering domains

Theorem (Baker, 1984)

If U is a multiply connected Fatou component then

U is a wandering domain

Un+1 surrounds Un, for large n
Un →∞ as n→∞.

Theorem (Zheng, 2006)

If U is a multiply connected wandering domain then there exist
sequences (rn) and (Rn) such that, for large n,

Un ⊃ {z : rn ≤ |z| ≤ Rn}

and
Rn/rn →∞ as n→∞.
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Dynamical behaviour in multiply connected wandering
domains

Theorem (Bergweiler, Rippon and Stallard, 2013)

If U is a multiply connected wandering domain then

for large n ∈ N, there is an absorbing annulus

Bn = A(ran
n , rbn

n ) ⊂ Un

with lim infn→∞ bn/an > 1

such that, for every compact set
C ⊂ U,

f n(C) ⊂ Bn for n ≥ N(C).

f behaves like a large degree monomial inside Bn.

This led to progress on a longstanding question as to whether
f ◦ g = g ◦ f implies J(f ) = J(g) (Benini, Rippon and Stallard).
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Background - orbits of simply connected wandering
domains

There are three possible types of orbits of a wandering domain
U containing a point z.

Escaping (f n(z)→∞)
• most known examples are of this type and are escaping

versions of periodic components.

Oscillating ((f n(z)) has bounded and unbounded
subsequences)
• Eremenko and Lyubich (1987) constructed examples using

approximation theory
• Bishop (2015) constructed examples using quasiconformal

folding

Bounded ((f n(z)) is bounded)
• Not known if these can exist
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Escaping wandering domains

Question Are all escaping wandering domains escaping
versions of periodic Fatou components?

Wandering attracting domain

f (z) = z + sin z + 2π

Wandering parabolic domain

f (z) = z cos z + 2π

Answer No - everything seems possible!
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Classifying simply connected wandering domains
Hyperbolic contraction

Theorem

Let U be a simply connected wandering domain and suppose
z,w ∈ U have distinct orbits. Then there are three possibilities.

1 U is contracting: for all such pairs z,w ∈ U,
ρUn (f n(z), f n(w)) decreases to 0.

2 U is semi-contracting: for all such pairs z,w ∈ U,
ρUn (f n(z), f n(w)) decreases to c(z,w) > 0.

3 U is eventually isometric: for all such pairs z,w ∈ U,
ρUn (f n(z), f n(w)) is eventually constant.

A wandering domain that is the lift of an
attracting basin / parabolic basin / Siegel disc is
contracting / contracting / isometric.
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attracting basin / parabolic basin / Siegel disc is
contracting / contracting / isometric.



Proof of hyperbolic contraction classification

Pick a base point z0 ∈ U.

Let φn : Un → D denote a Riemann mapping with
φ(f n(z0)) = 0.
Consider the sequence of inner functions gn = φnfφ−1

n−1.
Show that the rate of contraction depends on the values of
g′n(0) - using techniques of Beardon and Carne.

∞∑
n=0

(1− |g′n(0)|) =∞ ⇐⇒ gn(w)→ 0 as n→∞

for all w ∈ D.
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Contracting wandering domains

Recall U is contracting if
∑∞

n=0(1− |g′n(0)|) =∞.

This implies that, for w ∈ D, gn(w)→ 0 as n→∞.

U is strongly contracting if lim sup 1
n
∑n

k=1 |g′k (0)| = d < 1
• This implies that, for w ∈ D, |gn(w)| ≤ (d + ε)n, for large n.
• A wandering domain that is the lift of an attracting basin is

strongly contracting
• A wandering domain that is the lift of a parabolic basin is

not strongly contracting.

U is super-contracting if lim 1
n
∑n

k=1 |g′k (0)| = 0
• This implies that, for w ∈ D, d ∈ (0,1), |gn(w)| ≤ dn, for

large n.
• A wandering domain that is the lift of a super-attracting

basin is super-contracting.



Contracting wandering domains

Recall U is contracting if
∑∞

n=0(1− |g′n(0)|) =∞.

This implies that, for w ∈ D, gn(w)→ 0 as n→∞.

U is strongly contracting if lim sup 1
n
∑n

k=1 |g′k (0)| = d < 1
• This implies that, for w ∈ D, |gn(w)| ≤ (d + ε)n, for large n.
• A wandering domain that is the lift of an attracting basin is

strongly contracting
• A wandering domain that is the lift of a parabolic basin is

not strongly contracting.

U is super-contracting if lim 1
n
∑n

k=1 |g′k (0)| = 0
• This implies that, for w ∈ D, d ∈ (0,1), |gn(w)| ≤ dn, for

large n.
• A wandering domain that is the lift of a super-attracting

basin is super-contracting.



Contracting wandering domains

Recall U is contracting if
∑∞

n=0(1− |g′n(0)|) =∞.

This implies that, for w ∈ D, gn(w)→ 0 as n→∞.

U is strongly contracting if lim sup 1
n
∑n

k=1 |g′k (0)| = d < 1

• This implies that, for w ∈ D, |gn(w)| ≤ (d + ε)n, for large n.
• A wandering domain that is the lift of an attracting basin is

strongly contracting
• A wandering domain that is the lift of a parabolic basin is

not strongly contracting.

U is super-contracting if lim 1
n
∑n

k=1 |g′k (0)| = 0
• This implies that, for w ∈ D, d ∈ (0,1), |gn(w)| ≤ dn, for

large n.
• A wandering domain that is the lift of a super-attracting

basin is super-contracting.



Contracting wandering domains

Recall U is contracting if
∑∞

n=0(1− |g′n(0)|) =∞.

This implies that, for w ∈ D, gn(w)→ 0 as n→∞.

U is strongly contracting if lim sup 1
n
∑n

k=1 |g′k (0)| = d < 1
• This implies that, for w ∈ D, |gn(w)| ≤ (d + ε)n, for large n.

• A wandering domain that is the lift of an attracting basin is
strongly contracting

• A wandering domain that is the lift of a parabolic basin is
not strongly contracting.

U is super-contracting if lim 1
n
∑n

k=1 |g′k (0)| = 0
• This implies that, for w ∈ D, d ∈ (0,1), |gn(w)| ≤ dn, for

large n.
• A wandering domain that is the lift of a super-attracting

basin is super-contracting.



Contracting wandering domains

Recall U is contracting if
∑∞

n=0(1− |g′n(0)|) =∞.

This implies that, for w ∈ D, gn(w)→ 0 as n→∞.

U is strongly contracting if lim sup 1
n
∑n

k=1 |g′k (0)| = d < 1
• This implies that, for w ∈ D, |gn(w)| ≤ (d + ε)n, for large n.
• A wandering domain that is the lift of an attracting basin is

strongly contracting

• A wandering domain that is the lift of a parabolic basin is
not strongly contracting.

U is super-contracting if lim 1
n
∑n

k=1 |g′k (0)| = 0
• This implies that, for w ∈ D, d ∈ (0,1), |gn(w)| ≤ dn, for

large n.
• A wandering domain that is the lift of a super-attracting

basin is super-contracting.



Contracting wandering domains

Recall U is contracting if
∑∞

n=0(1− |g′n(0)|) =∞.

This implies that, for w ∈ D, gn(w)→ 0 as n→∞.

U is strongly contracting if lim sup 1
n
∑n

k=1 |g′k (0)| = d < 1
• This implies that, for w ∈ D, |gn(w)| ≤ (d + ε)n, for large n.
• A wandering domain that is the lift of an attracting basin is

strongly contracting
• A wandering domain that is the lift of a parabolic basin is

not strongly contracting.

U is super-contracting if lim 1
n
∑n

k=1 |g′k (0)| = 0
• This implies that, for w ∈ D, d ∈ (0,1), |gn(w)| ≤ dn, for

large n.
• A wandering domain that is the lift of a super-attracting

basin is super-contracting.



Contracting wandering domains

Recall U is contracting if
∑∞

n=0(1− |g′n(0)|) =∞.

This implies that, for w ∈ D, gn(w)→ 0 as n→∞.

U is strongly contracting if lim sup 1
n
∑n

k=1 |g′k (0)| = d < 1
• This implies that, for w ∈ D, |gn(w)| ≤ (d + ε)n, for large n.
• A wandering domain that is the lift of an attracting basin is

strongly contracting
• A wandering domain that is the lift of a parabolic basin is

not strongly contracting.

U is super-contracting if lim 1
n
∑n

k=1 |g′k (0)| = 0

• This implies that, for w ∈ D, d ∈ (0,1), |gn(w)| ≤ dn, for
large n.

• A wandering domain that is the lift of a super-attracting
basin is super-contracting.



Contracting wandering domains

Recall U is contracting if
∑∞

n=0(1− |g′n(0)|) =∞.

This implies that, for w ∈ D, gn(w)→ 0 as n→∞.

U is strongly contracting if lim sup 1
n
∑n

k=1 |g′k (0)| = d < 1
• This implies that, for w ∈ D, |gn(w)| ≤ (d + ε)n, for large n.
• A wandering domain that is the lift of an attracting basin is

strongly contracting
• A wandering domain that is the lift of a parabolic basin is

not strongly contracting.

U is super-contracting if lim 1
n
∑n

k=1 |g′k (0)| = 0
• This implies that, for w ∈ D, d ∈ (0,1), |gn(w)| ≤ dn, for

large n.

• A wandering domain that is the lift of a super-attracting
basin is super-contracting.



Contracting wandering domains

Recall U is contracting if
∑∞

n=0(1− |g′n(0)|) =∞.

This implies that, for w ∈ D, gn(w)→ 0 as n→∞.

U is strongly contracting if lim sup 1
n
∑n

k=1 |g′k (0)| = d < 1
• This implies that, for w ∈ D, |gn(w)| ≤ (d + ε)n, for large n.
• A wandering domain that is the lift of an attracting basin is

strongly contracting
• A wandering domain that is the lift of a parabolic basin is

not strongly contracting.

U is super-contracting if lim 1
n
∑n

k=1 |g′k (0)| = 0
• This implies that, for w ∈ D, d ∈ (0,1), |gn(w)| ≤ dn, for

large n.
• A wandering domain that is the lift of a super-attracting

basin is super-contracting.



Classifying simply connected wandering domains
Distance from boundary

Theorem

Let U be a simply connected wandering domain. Then there
are three possibilities.

A Away For all z ∈ U, f n(z) stays away from ∂Un.
B Bungee For all z ∈ U, there is a subsequence f nk (z) which

converges to ∂Unk and a subsequence which stays away.
C Converges For all z ∈ U, f n(z) converges to ∂Un.

Definition

We say f n(z) converges to the boundary if

∆nρUn (f n(z))→∞ as n→∞,

∆n = sup{ d
1+d : d = diamD, D is a disc contained in Un}.
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Examples of simply connected wandering domains

These two theorems together give 9 classes of simply
connected wandering domains.

All previously known examples of escaping wandering
domains belong to just 3 of these classes.
We give a new technique which allows us to construct
examples of all 9 possible types of bounded escaping
wandering domains.
Vasso will tell you about this tomorrow!
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