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2 Overview

Guiding principle of talk: Holomorphic dynamics has
accumulated a lot of deep knowledge especially on
polynomials. Rational maps seem much harder.
Principle: rational dynamics is no more difficult than polyno-
mial dynamics once we have a good combinatorial structure.
Report on multi-year project on dynamics of Newton dynamics;
outline of different ingredients and key difficulties.
1. Quadratic polynomials, local connectivity: topological
models, different orbits. Douady/Hubbard, Yoccoz et al
2. Quadratic parameter space, MLC: topological model,
different dynamics
3. Newton maps as dynamical systems, cubic case
4. The fundamental ingredients in building up the theory
5. Newton puzzles and the Fatou–Shishikura-injection
6. Thurston theory for Newton maps
7. Trivial fibers for Newton maps and rational rigidity
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3 Dynamics of quadratic polynomials

Introduction: 1980’s, Douady/Hubbard, Yoccoz, Thurston
Iterate pc(z) = z2 + c on C. Interesting set:
Filled-in Julia set: Kc := {z ∈ C : z has bounded orbit}.
Decisive: orbit of critical value c.
a) Critical orbit unbounded: Kc is Cantor set, dynamics on Kp is
shift on sequences over 2 symbols. All dynamics “same”.
=⇒ boring!
b) Critical orbit bounded (c ∈ Kc): then Kc is connected,
topologically very interesting!
Define M := {c ∈ C : c ∈ Kc}: the Mandelbrot set.
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4 (Some of) the relevant questions
Julia sets are complicated — describe:
a) simple models for the topology
b) simple models for the dynamics on the Ju-
lia set
c) are all orbits in the Julia set different? Can
they be combinatorially distinguished?

Two relevant concepts:
• Julia set is locally connected (every point has arbitrarily
small connected neighborhoods)
• every point z has trivial fiber (dynamics of z can be
distinguished from all other orbits).
Observation: both concepts are equivalent (in most cases).
Theorem (Douady/Hubbard/Yoccoz/Lyubich/. . . 1980–1995
“Most” quadratic Julia sets are locally connected.
Theorem (Thurston/Douady) Have nice topological models for
Julia sets in terms of invariant laminations and pinched disks.
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5 Invariant laminations and pinched disks

Thurston: an invariant quadratic lami-
nation is determined by a single angle
(Thurston)

Douady: the topology of the Julia set
is described completely by the “pinched
disk” of the lamination: take the quotient
of D, collape all leaves
The dynamics on the Julia set is the quo-
tient of angle doubling on the unit circle.
This works for all quadratic Julia sets, unless they are
renormalizable (small embedded polynomial dynamics) or
have irrationally indifferent periodic points (and often in these
cases too).
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6 Parameter space: the Mandelbrot set M

Define the Mandelbrot set M := {c ∈ C :
the Julia set Kc is connected}.
Every c ∈ M describes its own dynamical
system pc(z) = z2 + c.
Relevant questions:
a) find a simple model for the topology of M
b) are all dynamical systems pc different (for c ∈M)?
(They are topologically the same for c 6∈M =⇒ boring!).
Two analogous relevant concepts in parameter space:
• the Mandelbrot set is locally connected =⇒ simple
topology model
• every c ∈M has trivial fiber: the dynamics of pc can be
combinatorially distinguished from all other orbits.
Again: both questions equivalent!
Analogous theory of “quadratic minor lamination” for M.
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7 From Newton dynamics to rational rigidity

Project goal: carry over successful theory of dynamics on
quadratic polynomials to large family of rational Newton maps
of all degrees.

parameter space: distinction and classification of different
(postcritically finite and beyond) Newton maps
dynamics of Newton maps: description of Julia sets; all
fibers are trivial or renormalizable
... and Newton is great as a root finder! (Not today.)

Moral of the story: rational dynamics is not harder than
polynomial dynamics: the dynamics is easy unless polynomial
dynamics interferes! All difficulties can be boxed and sent to the
“department of polynomials”. (At least in case of Newton maps.)
Rational Rigidity Principle (for Newton Maps)
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8 Cubic Newton maps

Goal of research on quadratic polynomials: “should pave the
way for general holomorphic dynamics on P.
One example where that works: Newton maps of cubic
polynomials.
Polynomial p(z) = c(z − a1)(z − a2)(z − a3),
Np(z) = z − p(z)/p′(z)
Convenient coordinates: a1 = 0, a2 = 1; factor c cancels in Np

Hence p(z) = z(z − 1)(z − λ): one complex parameter

Smale’s observation: there are cubic Newton maps with open
disks of non-convergence! (Attracting cycles.)
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9 The space of cubic Newton maps

Special case: cubic polynomials pλ(z) = z(z − 1)(z − λ)
(classical) Complex parameter space (λ-plane); every λ ∈ C
describes a separate polynomial.

Black: parameters λ for which pλ has an attracting cycle.
Classified by countable collection of “little Mandelbrot sets”.
Colors: dynamics of the “free critical point” c = (0 + 1 + λ)/3
(determines the global dynamics).

Theorem: Every colored component has a unique center
forwhich the free critical point has finite orbit (preperiodic). Most
(all [*]) components of the little Mandelbrot sets have unique
centers for which the free critical point has finite orbit (periodic).
[*] if all fibers of Mandelbrot set trivial
General classification of Smale polynomials implied by
classification of all Newton maps.
Classify all Newton maps that have attracting cycles! (1980’s)
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10 The space of cubic Newton maps II

Theorem: Every colored component has a unique center
forwhich the free critical point has finite orbit (preperiodic). Most
(all[*]) components of the little Mandelbrot sets have unique
centers for which the free critical point has finite orbit (periodic).
Classification (Tan Lei, Roesch, Wang, Yin, since 1990’s) of
cubic Newton dynamics in terms of:
a) hyperbolic components (colored), through their centers (in
which dynamics is “postcritically finite”
b) little Mandelbrot sets (renormalizable dynamics)
We now understand cubic Newton map as well as the Mandel-
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11 Different Newton dynamical systems

Top row: different cubic Newton dynamical systems

Bottom row: the cubic Newton parameter space (λ-plane)
Different “hyperbolic components” in parameter space (bottom)
correspond to different positions of “free” the critical point in the
Newton dynamics (top). At the component center, the free
critical point lands on root.
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12 Distinguish different Newton dynamics

Move from one degree of freedom (cubics) to general case!

Example: several rational maps of degree 7: Newton maps of
degree 7 polynomials. Colors distinguish basins of different
roots. Basin components can be connected in different ways.
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13 Newton dynamics in general:
the beginning of the theory

Build theory of Newton dynamics in analogy to polynomial
dynamics
Step 1 (Przytycki, 1989): Every immediate basin is simply
connected, hence a Riemann domain
Step 2 (routine): change dynamics so that in every immediate
basin, all critical points coincide (“attracting-critically-finite”; surgery)

Step 3 (Hubbard-S.-Sutherland 2001): accesses to∞ in
immediate basins yield channel diagram: first step towards
combinatorics
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14 First hard step: connect the bubbles

Kostiantyn Drach, Yauhen Mikulich, Johannes Rückert, S.:
A combinatorial classification of postcritically fixed Newton
maps; Ergodic Theory & Dynamical Systems 2019

a) there is a finite preimage of the
channel diagram that contains all
poles
b) every “bubble” can be con-
nected to an immediate basin via
a finite chain of bubbles
c) any two bubbles can be con-
nected to each other through
finitely many bubbles within C
This provides global coordinate
system for all Newton maps

Specifically in the postcritically finite case when all critical orbits
are contained in (closures) of bubbles, we obtain a complete
classification via Thurston theory (→ postcritically fixed case.)
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15 Interesting challenge: attracting cycles

Newton maps may have attracting cycles of any period — even
for as simple polynomials as p(z) = z3 − 2z + 2! The
corresponding critical orbits are not connected to the chains of
bubbles (the Newton graph) — so the previous classification
does not apply here.

Theorem 1 (Drach, Lodge, S., Sowinski, 2018)

Every non-repelling cycle of period ≥ 2 is contained in a
renormalization domain.

This is the beginning of the story: all difficulties of Newton
dynamics are actually polynomial difficulties.
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16 Newton puzzles and the Fatou–Shishikura-injection

Kostiantyn Drach, Russell Lodge, S., Maik Sowinski
Puzzles and the Fatou–Shishikura-injection for rational Newton
maps; arXiv:1805.10746
Puzzles of Newton maps: iterated preimages of Newton graphs.
Main difficulty: proper containment of complementary components;
needed for polynomial-like maps / renormalization.

Theorem 2 (Fatou–Shishikura-injection)
There is a dynamically natural injection from the set of
non-repelling cycles to the set of critical points: every
non-repelling cycle has its own critical point(s).

Idea: If a non-repelling cycle has period 1, it is the root of the poly-
nomial and hence an attracting fixed point. All others are contained in
renormalization domains, so one can use the theory of polynomials.
True in which greater generality?
Provides self-contained foundation for all subsequent Newton work.
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17 Two main directions of subsequent research

A. Thurston theory: classification of all postcritically finite maps
for polynomials: every pcf polynomial has a unique Hubbard
tree, and different polynomials have different trees.
B. Yoccoz theory:
a) all points in the Julia set different (trivial dynamical fibers)
b) all points in parameter space are different (trivial parameter
fibers: parameter rigidity)
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18 Postcritically finite maps & Thurston’s theorem

Hyperbolic components in parameter space are classified
through dynamics at the center: postcritically finite.
General strategy for classification of rational maps
1. (***) From holomorphic dynamical system, extract invariant
tree or graph that “describes the dynamics”
2. (**) Find a classification of the resulting graphs
3. To show that these graphs are actually realized as
holomorphic maps:
a) (*) the map on graph extends to postcritically finite
topological branched cover on sphere (up to homotopy)
b) (***) this branched cover of sphere is realized by rational map
Difficulty in 1: hard to find good combinatorial structure for
non-polynomial rational maps (until recently, no good large
family): need analog to Hubbard tree
Difficulty in 3b: under which conditions can topological
dynamics on sphere be promoted to rational map? (Thurston)
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19 Thurston theory for Newton maps

First main difficulty: for postcritically finite Newton map, need
invariant graph that describes dynamics of all critical points.
a) The Newton graph (component of appropriate backwards
image of channel diagram). Captures dynamics of all fixed
points and their preimages, no higher order periodic points.
Describes the global structure of Newton dynamics (structure of
bubbles).
b) Embedded Hubbard trees capture dynamics of all
(pre)periodic critical points of eventual period ≥ 2
c) Newton rays connect the embedded Hubbard trees to the
Newton graph: chain of infinitely many bubbles that start at
immediate basins and converge to (“land at”) the embedded
Hubbard trees. — Natural construction but involving choice (like
Poirier’s “left or right” supporting rays for polynomials.
Russell Lodge, Yauhen Mikulich, S., Combinatorial properties
of Newton maps. arXiv:1510.02761.
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20 Thurston theory for Newton maps II

Extended Newton graphs: the union of Newton graph,
embedded Hubbard trees, and the Newton rays connecting
them.
Provides branched cover in sense of Thurston:
a) the dynamics on the graph extends uniquely to a branched
cover of the sphere;
b) it describes the topological dynamics of the Newton map
uniquely up the homotopy rel postcritical set.
Second main difficulty: describe the resulting trees (next slide)
and classify which of them are coming from rational maps (that
are automatically Newton maps)
Russell Lodge, Yauhen Mikulich, S.: A classification of
postcritically finite Newton maps. arXiv:1510.02771.
First large non-polynomial family of rational maps that is
classified via Thurston theory.
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21 Extended Newton graphs
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22 Extended Newton graphs are not obstructed

Axiomatic description of Extended Newton graphs leads to
family of branched covers. Can they be obstructed?
Key idea: Arcs Intersecting Obstructions Theorem by Tan Lei /
Kevin Pilgrim.
Channel diagram (Part of Newton graph that connects roots to
∞) provides invariant arc system in their sense.
Two possibilities:
a) invariant multicurve intersects channel diagram;
b) it does not.
In case a), useTan/Pilgrim theorem to show that curve must
surround∞ only: not essential, not an obstruction
In case b) that theorem implies that obstruction is disjoint from
entire Newton graph: can only intersect little Hubbard trees. So
the global Newton dynamics is “only as obstructed as
embedded polynomial dynamics”. If only non-obstructed
Hubbard trees used, then global dynamics non-obstructed.
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23 Yoccoz theory for Newton maps

Kostiantyn Drach, S., Rigidity of Newton dynamics. arxiv
1812.11919.

Theorem 3 (The Rational Rigidity Principle for Newton maps)

The fine structure of Newton maps, both in dynamics and
parameter space, is “trivial” except where embedded
polynomial dynamics interferes.

This means:
a) “points are points” in the Julia set of every polynomial
Newton map, everywhere except when renormalizable
b) any two polynomial Newton maps are combinatorially rigid modulo
renormalization: it both have the same combinatorial structure (the
bubbles are arranged in the same way); and if they are renormaliza-
ble, then the renormalizations are hybrid equivalent and at the same
combinatorial location, then the maps are conformally conjugate.

(Related work in non-renormalizable setting by Roesch, Yin, Zeng.)
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24 Some outlook

1. What happens beyond Newton maps?
Decomposition theorem of rational maps (with Dima Dudko
and Mikhail Hlushchanka; in writing) Every postcritically finite
rational maps decomposes naturally into Newton-like
components (to which our theory applies) and Sierpinski-like
components.

2. Dedicated talk on Rational Rigidity for Newton Maps by
Kostiantyn Drach right after this one.
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Thank you for your attention.
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