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anti-meromorphically to its interior.

A domain Q € € with co ¢ 9Q and int(Q) = Q1 is called a quadrature
domain if there exists a continuous function o : Q — C satisfying the

following two properties:
1. 0 =id on 09Q.
2. o is anti-meromorphic on Q.

» The map o is called the Schwarz reflection map of €.

» Examples: Round disks, - - -
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» The corresponding Schwarz reflection map o has a unique critical
point at co. Moreover, o(o0) = 0.
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Deltoid Reflection as a Mating

» The dynamics of the deltoid reflection map is a “mating” of p (on the
tiling set) and z? (on the non-escaping set).
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» The orientation-reversing double coverings p and z2 (of T) admit a
common Markov partition with the same transition matrix.
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» Consequently, p and Z2 are topologically conjugate by a circle
homeomorphism H.

» H conjugates the external class of quadratic antiholomorphic
polynomials and that of the ideal triangle group.
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The Circle and Cardioid Family

» Let Q be a cardioid; i.e. the image of the unit disk under a quadratic
polynomial. Note that ¢ is a quadrature domain.

Blar)’

» Q,:=QUB(a, ). We call its Schwarz reflection map F,.
» The unique critical point of F, is at 0.
» As a varies over the plane, we get a family of maps

C&C :={F,:Q, - C}.
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The Circle and Cardioid Family

In different coordinates, F, is a pinched quadratic-like map:

» The tiling set of F, is defined as the set of points in Q, that
eventually escape to T,.

» The non-escaping set K, of F, is the complement of the tiling set. It
is the filled Julia set of the pinched quadratic-like map.
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» 0+ oo+ 0; the “Basilica" map.
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» C ={a: K, is connected <= 0¢€ K,}.

» For maps in C, the dynamics on the tiling set is conformally conjugate
to the reflection map p (i.e. group structure).
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finite parameters of C& C and those in the basilica limb of the tricorn such
that the laminations of the corresponding maps are related by the circle
homeomorphism H.
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PCF Schwarz maps > with PCF polynomials

» Existence of polynomials with prescribed laminations: Kiwi's theorem.

» Injectivity: Combinatorial rigidity of geometrically finite maps (involves
analysis of the boundary behavior of conformal maps near cusps and
double points.).

» Surjectivity: Realiziing geometrically finite Schwarz maps (in C&C)
with prescribed laminations via “parameter rays".
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Another Family of Schwarz Reflections

» Univalent images of maximal round disks under a cubic polynomial f
= One-parameter family of Schwarz reflections.

Non-escaping
set

» Pinched quadratic-like maps with a unique point of pinching —
Quasiconformal straightening to parabolic rational maps.
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» Lifting Schwarz reflections by f produces a family of anti-holomorphic
correspondences on the Riemann sphere.

» Dynamics on the tiling set = Z; * Z3 = SLy(Z).

» Dynamics on the non-escaping set = Anti-holomorphic rational map.



Thank youl!



