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Quadrature Domains

I Every real-analytic curve admits local Schwarz reflection maps.

I A domain in the complex plane is called a quadrature domain if the
local Schwarz reflection maps with respect to its boundary extends
anti-meromorphically to its interior.

Definition
A domain Ω ( Ĉ with ∞ /∈ ∂Ω and int(Ω) = Ω is called a quadrature
domain if there exists a continuous function σ : Ω→ Ĉ satisfying the
following two properties:
1. σ = id on ∂Ω.
2. σ is anti-meromorphic on Ω.

I The map σ is called the Schwarz reflection map of Ω.
I Examples: Round disks, · · ·
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Simply Connected Quadrature Domains

Proposition (Characterization of S.C.Q.D.)

A simply connected domain Ω ( Ĉ (with ∞ /∈ ∂Ω and int(Ω) = Ω) is a
quadrature domain if and only if the Riemann map φ : D→ Ω is rational.
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The Complement of a Deltoid as a Quadrature Domain

I The complement of the deltoid has a Riemann map φ(z) = z + 1
2z2 ,

so it is a quadrature domain.

I The corresponding Schwarz reflection map σ has a unique critical
point at ∞. Moreover, σ(∞) =∞.
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The Welding Map

I The orientation-reversing double coverings ρ and z2 (of T) admit a
common Markov partition with the same transition matrix.

I Consequently, ρ and z2 are topologically conjugate by a circle
homeomorphism H.

I H conjugates the external class of quadratic antiholomorphic
polynomials and that of the ideal triangle group.
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The Circle and Cardioid Family
I Let ♥ be a cardioid; i.e. the image of the unit disk under a quadratic

polynomial. Note that ♥ is a quadrature domain.

I Ωa := ♥ ∪ B(a, ra)c . We call its Schwarz reflection map Fa.
I The unique critical point of Fa is at 0.
I As a varies over the plane, we get a family of maps

C&C := {Fa : Ωa → Ĉ}.
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The Circle and Cardioid Family

In different coordinates, Fa is a pinched quadratic-like map:

I The tiling set of Fa is defined as the set of points in Ωa that
eventually escape to Ta.

I The non-escaping set Ka of Fa is the complement of the tiling set. It
is the filled Julia set of the pinched quadratic-like map.
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The Connectedness Locus C

I C = {a : Ka is connected ⇐⇒ 0 ∈ Ka}.

I For maps in C, the dynamics on the tiling set is conformally conjugate
to the reflection map ρ (i.e. group structure).
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Bijection between Geom. Finite Parameters
Theorem (Lee, Lyubich, Makarov, M)

There exists a natural combinatorial bijection χ between the geometrically
finite parameters of C&C and those in the basilica limb of the tricorn such
that the laminations of the corresponding maps are related by the circle
homeomorphism H.

H

I Existence of polynomials with prescribed laminations: Kiwi’s theorem.
I Injectivity: Combinatorial rigidity of geometrically finite maps (involves

analysis of the boundary behavior of conformal maps near cusps and
double points.).

I Surjectivity: Realiziing geometrically finite Schwarz maps (in C&C )
with prescribed laminations via “parameter rays".
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1) Every geometrically finite map Fa is a conformal mating of the
geometrically finite quadratic anti-holomorphic polynomial fχ(a) and the
reflection map ρ.

The “welding" map is a factor of H.

2) The lamination model of C is homeomorphic to that of the basilica limb
of the tricorn (no “dynamically defined homeomorphism").
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Another Family of Schwarz Reflections

I Univalent images of maximal round disks under a cubic polynomial f
=⇒ One-parameter family of Schwarz reflections.

I Pinched quadratic-like maps with a unique point of pinching =⇒
Quasiconformal straightening to parabolic rational maps.
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I Lifting Schwarz reflections by f produces a family of anti-holomorphic

correspondences on the Riemann sphere.

I Dynamics on the tiling set ∼= Z2 ∗ Z3 ∼= SL2(Z).
I Dynamics on the non-escaping set ∼= Anti-holomorphic rational map.
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