Dynamics of Chebyshev Polynomials

Christian Henriksen

Department of Applied Mathematics and Computer Science Technical University of Denmark

2019-03-18

Joint work

Jacob Stordahl Christiansen, LTH Henrik Laurberg Pedersen, KU Carsten <u>Petersen, RUC</u>

Plan

Dynamics of polynomials Chebyshev polynomials Dynamics of Chebyshev polynomials Pictures Mathematics and conjectures behind the pictures

Plan

Dynamics of polynomials Chebyshev polynomials Dynamics of Chebyshev polynomials Pictures Mathematics and conjectures behind the pictures

Polynomial dynamics

Iteration Non-linear polynomial p

$$z \to p(z) \to p(p(z)) \to \cdots$$

Totally invariant sets K(p), J(p), F(p), $\Omega(p)$

Some notation

Classes of polynomials

- \mathcal{P}_n formed by polynomials p(z) of degree at most n.
- $\mathcal{P}_n^{>0}$ formed by polynomials p(z) of degree *n* with leading coefficient real and postive.
- *P*⁼¹_n formed by polynomials *p*(*z*) of degree *n* with leading coefficient equal to one.

Chebyshev polynomials

From Orthogonal Polynomials

 μ gives inner product, that leads to orthogonal polynomials

$$P_0, P_1, \ldots \in \mathcal{P}_n$$

Set

$$p_n=\frac{P_n}{[z^n]P_n(z)}\in\mathcal{P}_n^{=1}.$$

Extremal property: pn minimizes

$$|| \pmb{p} ||_{2,\mu}$$
 among $\pmb{p} \in \mathcal{P}_{\pmb{n}}^{=1}$.

Chebyshev polynomials

Definition

Compact K leads to uniquely determined sequence $t_n(z; K), n = 0, 1, 2, ..., |K|$ of monic polynomials: $t_n(z; K)$ is the monic degree n polynomial that minimizes

$$||p_n||_{\mathcal{K},\infty}, \quad p_n \in \mathcal{P}_n^{=1}$$

Existence: Can restrict to polynomials with roots in Co(K). Uniqueness: Via cardinality of extremal points.

Norm-alized

Set

$$T_n = t_n / ||t_n||_{\mathcal{K},\infty}.$$

Then T_n has maximal leading coefficient among

$$\{P \in \mathcal{P}_n^{>0} : ||P||_{\mathcal{K},\infty} \le 1\}$$

Examples Disk and segment

Dynamics

Prior work by Barnsley, Geronomi, Harrington for orthogonal polynomials when μ is a particular measure.

Limit results for $K_{P_n} = K_n$ by [PCHP]

What about $K_n = K_{T_n}$?

Limits of sets

For a sequence of compact sets K_n , we set

 $\limsup K_n = \cap_n \overline{\bigcup_{k>n} K_n}.$

For a sequence of connected open sets Ω_n containing ∞ , we set

 $\limsup \Omega_n = \cup \{ V : V \text{ admissible } \},\$

where admissible means that V is

- V is an open connected set containing ∞
- $V \subset \Omega_n$ for infinitely many values of *n*.

Theorem [PCHP] in preparation

Suppose

K non-polar and compact. T_n normalized Chebyshev polynomials K_n filled Juliaset, Ω_n complement

Then

 $\limsup K_n \subset \operatorname{Co}(K)$ $\limsup \Omega_n \cap K = \emptyset$

Norm bounds

Easy to get upper bound on $||t_n||_{K,\infty}$. Recall $T_n(z; K)$ is the polynomial with maximal leading coefficient among

 $\{P \in \mathcal{P}_n^{>0} : ||P||_{\mathcal{K},\infty} \le 1\}$

If $K' \subset K$ then $[z^n]T_n(z; K') \ge [z^n]T_n(z; K)$. When $K' = \{\zeta_0, \ldots, \zeta_n\}$ of card. n + 1, then

$$\mathcal{T}_n(z; \mathcal{K}') = \sum_{k=0}^n \prod_{j \neq k} rac{z - \zeta_j}{\mid \zeta_k - \zeta_j \mid}$$

Leading coefficient is

$$E(\zeta_0,\ldots,\zeta_n)=\sum_{k=0}^n\prod_{j
eq k}\mid \zeta_k-\zeta_j\mid^{-1}$$

Norm bounds

So when
$$K' = \{\zeta_0, \dots, \zeta_n\} \subset K$$
 then
 $E(\zeta_0, \dots, \zeta_n) \ge [z^n]T_n(z; K)$

or equivalently

$$E(\zeta_0,\ldots,\zeta_n)^{-1} \leq ||t_n||_{K,\infty}$$

Conjecture (wimpy version)

When K is an arc of circle, and $E(\zeta_0, \ldots, \zeta_n)$ is minimal then

 $T_n(z; K) = T_n(z; \{\zeta_0, \ldots, \zeta_n\})$

Final remarks

- ► Work in progress
- Conference Holomorphic Days June 2. – 3.
 Copenhagen, Denmark