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Linear maps in the plane
do not preserve circles

Arnaud Chéritat (CNRS, IMT) Straightening the square Mar. 2019 2 / 33



Beltrami derivative

• C = the complex numbers = a Euclidean plane ≡ R2

• f : a map from (a domain of) the plane to (a domain of) the plane. In
this whole talk, we assume f orientation preserving, i.e. det(df )> 0.

Then f is holomorphic i� its di�erential df is a similitude everywhere. A
holomorphic and injective map is called conformal.

One a way to measure how far df is from being a similitude is to
consider the ellipse obtained as the image or pre-image of a circle by df
and measure its �atness (a.k.a. ratio) K=�major/minor axis�> 1.

The Beltrami derivative it is a complex number Bf (z) that encodes
faithfully the �atness and orientation of the pre-image of a circle by df .

� Bf (z) can be any complex number of modulus < 1

� Bf = 0 i� df is a similitude
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Ellipse fields

An ellipse field is the data of (in�nitesimal) ellipses attached to each
point of a domain. Their size is not relevant, only their direction and
�atness, encoded by a complex number µ(z) with the same convention
as for Bf .

Straightening the ellipse �eld is solving the di�erential equation Bf = µ,
i.e. �nding a deformation f of the plane whose di�erential sends all the
ellipses to circles.

Uses, existence, formula?
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The disk

Setting: an ellipse �eld on the plane that is constant in the unit disk
(µ= a), and circles outside (µ= 0). Problem: �nd the straightening.
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The disk
an amazing coincidence

(1+ a)x

(1− a)y

z +
a

z
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The disk
an amazing coincidence (a conspiracy?)

Recall that if z = x + iy then z = x − iy and |z |2 = x2 + y2 = zz , hence

|z |= 1 ⇐⇒
1

z
= z .

In particular for z on the unit circle:

z +
a

z
= z + az = x + iy + a(x − iy) = (1+ a)x + i(1− a)y .

Click here to run appletClick here to run applet

Arnaud Chéritat (CNRS, IMT) Straightening the square Mar. 2019 7 / 33



The disk
an amazing coincidence (a conspiracy?)

Recall that if z = x + iy then z = x − iy and |z |2 = x2 + y2 = zz , hence

|z |= 1 ⇐⇒
1

z
= z .

In particular for z on the unit circle:

z +
a

z
= z + az = x + iy + a(x − iy) = (1+ a)x + i(1− a)y .

Click here to run appletClick here to run applet

Arnaud Chéritat (CNRS, IMT) Straightening the square Mar. 2019 7 / 33



The disk
an amazing coincidence (a conspiracy?)

Recall that if z = x + iy then z = x − iy and |z |2 = x2 + y2 = zz , hence

|z |= 1 ⇐⇒
1

z
= z .

In particular for z on the unit circle:

z +
a

z
= z + az = x + iy + a(x − iy) = (1+ a)x + i(1− a)y .

Click here to run appletClick here to run applet

Arnaud Chéritat (CNRS, IMT) Straightening the square Mar. 2019 7 / 33



The square

Setting: an ellipse �eld on the plane that is constant in the square
(µ= a), and circles outside (µ= 0).
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The square
An anecdote

A mysterious drawing pinned on A. Douady's o�ce wall in the 1990's.
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The square
An anecdote
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The square
By curiosity

What does it look like on Douady?
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The square
a naive attempt

Click here to run appletClick here to run applet
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The square
An obstruction to naiveness from potential theory

Because conformal maps must preserve the solutions of Laplace's
equation ∆V = 0, energy considerations imply that a side of the
rectangle cannot be mapped to a curve with a too small diameter.
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The square
Modified Laplacian approach

The solution f of the Beltrami equation is harmonic for a modi�ed
Laplacian:

e∆f = 0.

There are several well-studied schemes to solve this kind of equations
numerically. To obtain the following set of pictures, I worked on a grid,
used a discrete modi�ed laplacian, and approximated a solution using
the Jacobi relaxation method, an iterative method that converges rapidly.
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Numerically solving a modified Laplacian

K = 2
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Numerically solving a modified Laplacian

K = 10
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Numerically solving a modified Laplacian

K = 20
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Limit as K →+∞
Guesses for the square

A WORKED OUT EXAMPLE OF STRAIGHTENING 7

All this discussion was about solving ∆φ = 0. Amongst other approaches, there
are:

• Circle Packings (see [He 1990] and [Brock Williams 2006] for instance).
However, it probably needs a very dense mesh too when K tends to in-
finity.

• Fourier series and the Hilbert-Beurling singular integral operator. See for
instance [Daripa 1993], [Gaydashev and Khmelev 2008]. One could also
periodize the problem (using the big square as a fundamental domain) and
use standard 2D Fourier series on the torus.

• Discrete Riemann surfaces. See [Mercat 2008].

But I did not push my experiments further. In any case, big values of K seemed
to require a lot of work and computer time. The behavior of φ(Sq) when K −→ +∞
remained a mystery for me. I was short of theoretical arguments, and there was no
hope of an explicit formula there, unlike the case of the disk. . . Or so I thought.

Figure 7: Five guesses of the possible limit shape, if there is one, together with a
possible way to tend to it.

2.3. A few guesses. Imagining that φ(Sq) has a limit when K −→ ∞, what
could it be? It should be noted that the spiral, which was quite slowly turning for
K = 2, does it faster and faster. But does its diameter tend to 0? Figure 7 gives
a few possibilities. We will see later in the article that the reality is even more. . .
interesting.

3. An explicit formula

It turns out that there is an (almost completely) explicit formula for φ−1. It
allowed the author to draw very precisely on the computer the image of the square,
and to push the value of K up to 1050 and beyond. . . Thanks to these pictures,
it was possible to guess the limit of φ(Sq), at least qualitatively. The formula can
be proved to have a limit that allows to give a guess of the actual limit of φ(Sq).
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The square
Reformulation

Chart 1

Chart 2

z + (i/2)

z − (i/2)

2z + 1

2z − 1

Glue the two charts
according to the in-
dicated maps1

1

1

1/2

Arnaud Chéritat (CNRS, IMT) Straightening the square Mar. 2019 17 / 33



The square

The changes of coordinates are of the form z 7→ az + b, thus are
holomorphic: we just de�ned a Riemann surface.

But better. . .

The change of coordinates are similitudes, so we work with a more rigid
category of geometrical object, similarity surfaces, with interesting
properties like. . .

. . . a locally trivial parallel transport.

Click here to run appletClick here to run applet
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The square

How do ones living there see their world?

Click here to run appletClick here to run applet
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Uniformization theorem

Theorem: (Poincaré, Koebe) A Riemann surface that is

homeomorphic to a sphere is necessarily conformally equivalent to the

Euclidean sphere.

In our case, we can complete our gluing by adding 5 points, one at
in�nity, four at the corners, and 5 Riemann charts near these points.
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Completing the Riemann surface

1. Near∞, the map z 7→ 1/z gives a local chart (exactly like the
Riemann sphere).

2. Near a corner, we can glue one side of the rectangle to one side of the
square and are left with the following local picture: a slit plane where
one side of the slit is glued to the other side by a homothety of ratio K .

Then the map

z 7→ zα, α=
2πi

2πi ± logK

is a local chart: in particular it glues each side of slit exactly according
to the required homothety.

Click here to run appletClick here to run applet
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A cultural remark
M.C. Escher’s lithography: Print Gallery (1956)
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A solution via uniformization

The Euclidean sphere minus one point is conformally equivalent to the
plane (stereographic projection).

−→ this allows to create a solution of the Beltrami equation:

conformal

z 7→ z

(x ,y) 7→ (x ,
y

K
)

gluings
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Explicit uniformization?

But usually �nding the explicit uniformization of abstract Riemann
surfaces is a very hard problem, so what helps us here?
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The global chart C \ {z1, . . . , z4} is a Riemann chart but not a sim-chart.
The change of coordinates from this chart to the sim-charts are
holomorphic functions φ : U → C with U ⊂ C \ {z1, . . . , z4}. For two such
sim-charts, φ1, φ2, then on U1 ∩U2 they satisfy (locally)

φ1 = aφ2 + b

for some constants a, b. Hence

φ′′2
φ′2

=
φ′′1
φ′1

.
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It follows that there exists a global holomorphic function

η : C \ {z1, . . . , z4} → C

such that sim-charts are exactly the (local) solution φ of

φ′′

φ′
= η.

From η, one retrieves φ as follows:

φ =

∫

exp

∫

η.

Note: (di�erential geometry viewpoint) the function η is the
expression* of a holomorphic and locally �at connection.

(*) a.k.a. a Christo�el symbol.

Click here to run appletClick here to run applet
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Analyzing η at the singularities

Change of variable for the connection: if one expresses η in two
Riemann charts C1 and C2 with change of coordinates ψ between them,
then the expressions η1 and η2 in the respective charts are related by:

η2 =ψ
′ ×η1◦ψ+

ψ′′

ψ′
. (1)

(It is almost like a di�erential form).

For the slit plane model, recall the gluing z 7→ zα with α= 2πi
2πi±logK .

Then φ = z1/α hence φ′′/φ′ =
1
α−1
z :

η1 =
logK

2πi
·
1

z
.

By (1), η2 has a simple pole at zi and its polar part is logK
2πi ·

1
z−zi

.
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Solution

As a consequence:

• η has a simple pole at zk with residue log(K )/2πi .

• η −→ 0 when z −→∞
and recall η is holomorphic on C \ {z1, . . . , z4}. Hence. . .

η=
logK

2πi
·
�

−1
z − z1

+
1

z − z2
+
−1

z − z3
+

1

z − z4

�

Now solving φ′′/φ′ = η gives:

φ = b+ a

∫

�

z − z2
z − z4

·
z − z1
z − z3

�
logK
2πi

dz .

The conformal map sought for is locally the inverse mapping of φ (for
appropriate choices of the integration constants a, b).

Click here to run appletClick here to run applet
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The Schwarz-Christoffel formula

The formula we found

a+ b

∫

�

z − z2
z − z4

·
z − z1
z − z3

�
logK
2πi

dz

is an analogue of the Schwarz-Christo�el formula that gives an
expression of the conformal map from the upper half plane to any
polygon in the plane: for an n-gon with angles αk ∈ (0,2π), there exists
real numbers x1,. . . ,xn such that

f = a+ b

∫

dz

(z − x1)β1 · · · (z − xn)βn

with βk = 1− αk
π .

The xi are mapped to the vertices of the polygon. They can be hard to
determine: each depends on all the angles and the length of all sides of
the polygon. This is called the parameter problem.
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Parameter problem

Similarly in our question we face a parameter problem: �nding the
values of z1,. . . ,z4. Using the symmetries, this reduces to �nding the
shape ratio K ′ of the rectangle z1,. . . ,z4 as a function of K .

(Note: K ′ 6= K .)

We thus have a one (real) parameter equation of unknown K ′:

(E)

∫

[z1,z2]
ω
∫

[z4,z1]
ω

= iK .

with ω=
�

z−z2
z−z4
· z−z1z−z3

�
logK
2πi

dz .

I resorted to solve (E) numerically for each explicit value of K (this is
not too hard).

Arnaud Chéritat (CNRS, IMT) Straightening the square Mar. 2019 30 / 33



K = 2
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K = 5
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K = 15
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K = 50
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K = 200
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K = 1000
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K = 10
4
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K = 10
6
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K = 10
9

Arnaud Chéritat (CNRS, IMT) Straightening the square Mar. 2019 31 / 33



K = 10
20
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K = 10
50
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K = 10
50
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The limit

As K −→+∞ we see a limit shape and can prove

ηK −→ η∞ =
σ0

(z − x0)2
−

σ0

(z + x0)2

This limit shape also has an interpretation in terms of similarity surfaces:

Click here to run appletClick here to run applet
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The limit
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